Davide Ravelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	47.7	442
2	Diradicals Photogeneration from Chloroaryl‧ubstituted Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	3.3	2
3	A special issue dedicated to Angelo Albini on the occasion of his 75th birthday. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	0
4	Designing radical chemistry by visible light-promoted homolysis. Trends in Chemistry, 2022, 4, 305-317.	8.5	21
5	Catalyst-free [2 + 2] photocycloadditions between benzils and olefins under visible light. Photochemical and Photobiological Sciences, 2022, 21, 695-703.	2.9	6
6	Photocatalytic generation of ligated boryl radicals from tertiary amine-borane complexes: An emerging tool in organic synthesis. Chem Catalysis, 2022, 2, 957-966.	6.1	12
7	Photoelectrochemical cross-dehydrogenative coupling of benzothiazoles with strong aliphatic C–H bonds. Chemical Communications, 2021, 57, 4424-4427.	4.1	67
8	Bio-based crotonic acid from polyhydroxybutyrate: synthesis and photocatalyzed hydroacylation. Green Chemistry, 2021, 23, 3420-3427.	9.0	29
9	2.6 Generation of Carbon-Centered Radicals by Photochemical Methods. , 2021, , .		0
10	Decatungstate as Direct Hydrogen Atom Transfer Photocatalyst for SOMOphilic Alkynylation. Organic Letters, 2021, 23, 2243-2247.	4.6	55
11	Photocatalyzed Generation of Nitrosocarbonyl Intermediates Under Solar Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1443-1447.	2.4	7
12	Precursor-Dependent Photocatalytic Activity of Carbon Dots. Molecules, 2020, 25, 101.	3.8	22
13	Photocatalytic Isocyanide-Based Multicomponent Domino Cascade toward the Stereoselective Formation of Iminofurans. Journal of Organic Chemistry, 2020, 85, 1981-1990.	3.2	20
14	Direct Decarboxylative Functionalization of Carboxylic Acids via O–H Hydrogen Atom Transfer. Journal of the American Chemical Society, 2020, 142, 44-49.	13.7	40
15	Antimony–Oxo Porphyrins as Photocatalysts for Redox-Neutral C–H to C–C Bond Conversion. ACS Catalysis, 2020, 10, 9057-9064.	11.2	23
16	Substituent Effects on NMR Spectroscopy of 2,2-Dimethylchroman-4-one Derivatives: Experimental and Theoretical Studies. Molecules, 2020, 25, 2061.	3.8	2
17	The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European Journal of Organic Chemistry, 2020, 2020, 2783-2806.	2.4	35
18	C(sp ³)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 2020, 369, 92-96.	12.6	263

#	Article	IF	CITATIONS
19	Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review. Beilstein Journal of Organic Chemistry, 2020, 16, 1476-1488.	2.2	19
20	Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?. Green Chemistry, 2020, 22, 3376-3396.	9.0	157
21	Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates. ChemElectroChem, 2019, 6, 4450-4455.	3.4	26
22	Identifying Amidyl Radicals for Intermolecular C–H Functionalizations. Journal of Organic Chemistry, 2019, 84, 12983-12991.	3.2	38
23	A tan for molecules: photocatalyzed synthesis with direct sunlight. Rendiconti Lincei, 2019, 30, 485-495.	2.2	2
24	Voltammetric Determination of Binding Constant and Stoichiometry of Albumin (Human, Bovine,) Tj ETQq0 0 0	rgBT /Over 6.5	rloçk 10 Tf 50
25	Photokatalyse und Elektrochemie: Ein neues Bündnis in der organischen Synthese. Angewandte Chemie, 2019, 131, 17670-17672.	2.0	28
26	Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis. Angewandte Chemie - International Edition, 2019, 58, 17508-17510.	13.8	100
27	Photoredox-Catalyzed Generation of Acetonyl Radical in Flow: Theoretical Investigation and Synthetic Applications. ACS Catalysis, 2019, 9, 2493-2500.	11.2	25
28	Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chemistry, 2019, 21, 748-764.	9.0	142
29	Wavelength dependence and wavelength selectivity in photochemical reactions. Photochemical and Photobiological Sciences, 2019, 18, 2094-2101.	2.9	56
30	Visible Light Uranyl Photocatalysis: Direct C–H to C–C Bond Conversion. ACS Catalysis, 2019, 9, 3054-3058.	11.2	84
31	Efficiency and Selectivity Aspects in the C–H Functionalization of Aliphatic Oxygen Heterocycles by Photocatalytic Hydrogen Atom Transfer. Synlett, 2019, 30, 803-808.	1.8	16
32	Alkoxy radicals generation: facile photocatalytic reduction of <i>N</i> -alkoxyazinium or azolium salts. Chemical Communications, 2019, 55, 3029-3032.	4.1	48
33	Photocatalytic Fluorination Reactions. , 2019, , 183-221.		0
34	Photoorganocatalysis in Organic Synthesis. Catalytic Science Series, 2019, , .	0.0	30
35	Aromatics and Cyanoaromatics. Catalytic Science Series, 2019, , 71-111.	0.0	0
36	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie - International Edition, 2018, 57, 4078-4082.	13.8	179

#	Article	IF	CITATIONS
37	Site-selectivity in TBADT-photocatalyzed C(sp ³)–H Functionalization of Saturated Alcohols and Alkanes. Chemistry Letters, 2018, 47, 207-209.	1.3	30
38	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie, 2018, 130, 4142-4146.	2.0	45
39	Acyl Radicals from Acylsilanes: Photoredox-Catalyzed Synthesis of Unsymmetrical Ketones. ACS Catalysis, 2018, 8, 304-309.	11.2	97
40	Reagent-dictated site selectivity in intermolecular aliphatic C–H functionalizations using nitrogen-centered radicals. Chemical Science, 2018, 9, 5360-5365.	7.4	53
41	Multi-Step Continuous Flow Synthesis of β/γ-Substituted Ketones. ChemPhotoChem, 2018, 2, 847-850.	3.0	8
42	Site-Selective C–H Functionalization by Decatungstate Anion Photocatalysis: Synergistic Control by Polar and Steric Effects Expands the Reaction Scope. ACS Catalysis, 2018, 8, 701-713.	11.2	313
43	Photochemical synthesis: Using light to build C–C bonds under mild conditions. Comptes Rendus Chimie, 2017, 20, 261-271.	0.5	23
44	Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis. Chemical Communications, 2017, 53, 2335-2338.	4.1	125
45	Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis. European Journal of Organic Chemistry, 2017, 2017, 2056-2071.	2.4	507
46	Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells. Journal of Power Sources, 2017, 348, 57-65.	7.8	50
47	Cooperative Polar/Steric Strategy in Achieving Siteâ€5elective Photocatalyzed C(sp ³)â^H Functionalization. Chemistry - A European Journal, 2017, 23, 8615-8618.	3.3	37
48	Singlet vs Triplet Reactivity of Photogenerated α, <i>n</i> -Didehydrotoluenes. Journal of Organic Chemistry, 2017, 82, 6592-6603.	3.2	10
49	Design Consideration of Continuous-Flow Photoreactors. , 2017, , 1-36.		6
50	Vinylpyridines as Building Blocks for the Photocatalyzed Synthesis of Alkylpyridines. Chemistry - A European Journal, 2017, 23, 6527-6530.	3.3	55
51	Sugar-Assisted Photogeneration of Didehydrotoluenes from Chlorobenzylphosphonic Acids. Journal of Organic Chemistry, 2017, 82, 12162-12172.	3.2	3
52	Sunlight decatungstate photoinduced trifluoromethylations of (hetero)aromatics and electron-poor olefins. Photochemical and Photobiological Sciences, 2017, 16, 1375-1380.	2.9	26
53	Photocatalyzed Site-Selective C(sp ³)–H Functionalization of Alkylpyridines at Non-Benzylic Positions. Organic Letters, 2017, 19, 6436-6439.	4.6	31
54	A biomass-derived polyhydroxyalkanoate biopolymer as safe and environmental-friendly skeleton in highly efficient gel electrolytes for lithium batteries. Electrochimica Acta, 2017, 247, 63-70.	5.2	10

#	Article	IF	CITATIONS
55	Flow Metalâ€Free ArC Bond Formation <i>via</i> Photogenerated Phenyl Cations. Advanced Synthesis and Catalysis, 2016, 358, 1164-1172.	4.3	18
56	Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 2016, 116, 9850-9913.	47.7	867
57	Unraveling the Key Features of the Reactive State of Decatungstate Anion in Hydrogen Atom Transfer (HAT) Photocatalysis. ACS Catalysis, 2016, 6, 7174-7182.	11.2	124
58	Photoinduced Multicomponent Reactions. Angewandte Chemie - International Edition, 2016, 55, 15476-15484.	13.8	174
59	Application of Visible and Solar Light in Organic Synthesis. Lecture Notes in Quantum Chemistry II, 2016, , 281-342.	0.3	6
60	Photoinduzierte Mehrkomponentenreaktionen. Angewandte Chemie, 2016, 128, 15702-15711.	2.0	36
61	Decatungstate Anion for Photocatalyzed "Window Ledge―Reactions. Accounts of Chemical Research, 2016, 49, 2232-2242.	15.6	244
62	Smooth Photocatalyzed Benzylation of Electrophilic Olefins via Decarboxylation of Arylacetic Acids. Journal of Organic Chemistry, 2016, 81, 7102-7109.	3.2	63
63	(Hetero)aromatics from dienynes, enediynes and enyne–allenes. Chemical Society Reviews, 2016, 45, 4364-4390.	38.1	70
64	CHAPTER 11. New Synthetic Routes in Heterogeneous Photocatalysis. RSC Energy and Environment Series, 2016, , 303-344.	0.5	2
65	Decatungstate Photocatalyzed Acylations and Alkylations in Flow v <i>ia</i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.	4.3	65
66	Decatungstateâ€Photocatalyzed Siâ^'H/Câ^'H Activation in Silyl Hydrides: Hydrosilylation of Electronâ€Poor Alkenes. ChemCatChem, 2015, 7, 3350-3357.	3.7	80
67	Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview. Molecules, 2015, 20, 1527-1542.	3.8	17
68	Revising the Role of a Dioxirane as an Intermediate in the Uncatalyzed Hydroperoxidation of Cyclohexanone in Water. Journal of Organic Chemistry, 2015, 80, 6425-6431.	3.2	11
69	Aromatic Aldehydes as Energyâ€Transfer Photoorganocatalysts. ChemCatChem, 2015, 7, 735-737.	3.7	9
70	Photogenerated α, <i>n</i> -Didehydrotoluenes from Chlorophenylacetic Acids at Physiological pH. Journal of Organic Chemistry, 2015, 80, 852-858.	3.2	10
71	Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1860-1865.	6.7	32
72	Conditions and Edges for the Photochemical Generation of Short-Lived Aryl Cations: A Computational Approach. Synlett, 2015, 26, 471-478.	1.8	12

#	Article	IF	CITATIONS
73	Photocatalyzed Site-Selective C–H to C–C Conversion of Aliphatic Nitriles. Organic Letters, 2015, 17, 1292-1295.	4.6	53
74	Photocatalytic CH Activation by Hydrogenâ€Atom Transfer in Synthesis. ChemCatChem, 2015, 7, 1516-1523.	3.7	140
75	Photocatalytic One-Pot Synthesis of Homoallyl Ketones via a Norrish Type I Reaction of Cyclopentanones. Journal of Organic Chemistry, 2015, 80, 9365-9369.	3.2	25
76	Photocatalytic Synthesis of Oxetane Derivatives by Selective CH Activation. Advanced Synthesis and Catalysis, 2014, 356, 2781-2786.	4.3	45
77	Flow Synthesis of Substituted Î³â€Łactones by Consecutive Photocatalytic/Reductive Reactions. Advanced Synthesis and Catalysis, 2014, 356, 753-758.	4.3	33
78	Competing Pathways in the Photogeneration of Didehydrotoluenes from (Trimethylsilylmethyl)aryl Sulfonates and Phosphates. Chemistry - A European Journal, 2014, 20, 17572-17578.	3.3	8
79	Sunlight photocatalyzed regioselective β-alkylation and acylation of cyclopentanones. Chemical Science, 2014, 5, 2893-2898.	7.4	129
80	Methoxy-Substituted α, <i>n</i> -Didehydrotoluenes. Photochemical Generation and Polar vs Diradical Reactivity. Journal of the American Chemical Society, 2014, 136, 13874-13881.	13.7	11
81	Electronic and EPR spectra of the species involved in [W10O32]4â^' photocatalysis. A relativistic DFT investigation. Physical Chemistry Chemical Physics, 2013, 15, 2890.	2.8	28
82	Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. Journal of Electroanalytical Chemistry, 2013, 711, 1-7.	3.8	16
83	Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Power Sources, 2013, 235, 142-147.	7.8	58
84	From Phenyl Chlorides to α, <i>n</i> -Didehydrotoluenes via Phenyl Cations. A CPCM–CASMP2 Investigation. Journal of Organic Chemistry, 2013, 78, 3814-3820.	3.2	11
85	Efficient C–H/C–N and C–H/C–CO–N Conversion via Decatungstate-Photoinduced Alkylation of Diisopropyl Azodicarboxylate. Organic Letters, 2013, 15, 2554-2557.	4.6	137
86	PEGylated carbon nanotubes: preparation, properties and applications. RSC Advances, 2013, 3, 13569.	3.6	34
87	Photoorganocatalysis. What for?. Chemical Society Reviews, 2013, 42, 97-113.	38.1	790
88	Smooth photogeneration of α,n-didehydrotoluenes (DHTs). Pure and Applied Chemistry, 2013, 85, 1479-1486.	1.9	5
89	Decatungstate Photocatalyzed Benzylation of Alkenes with Alkylaromatics. Advanced Synthesis and Catalysis, 2013, 355, 2891-2899.	4.3	42
90	Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes. Beilstein Journal of Organic Chemistry, 2013, 9, 800-808.	2.2	5

#	Article	IF	CITATIONS
91	Visible Light Photocatalysis. A Green Choice?. Current Organic Chemistry, 2013, 17, 2366-2373.	1.6	40
92	Decatungstate As Photoredox Catalyst: Benzylation of Electron-Poor Olefins. Organic Letters, 2012, 14, 4218-4221.	4.6	67
93	Acetalization Allows the Photoheterolysis of the Ar–Cl Bond in Chlorobenzaldehydes and Chloroacetophenones. Journal of Organic Chemistry, 2012, 77, 9094-9101.	3.2	15
94	α, <i>n</i> â€Didehydrotoluenes by Photoactivation of (Chlorobenzyl)trimethylsilanes: An Alternative to Enyne–Allenes Cyclization. Angewandte Chemie - International Edition, 2012, 51, 8577-8580.	13.8	24
95	Dyes as Visible Light Photoredox Organocatalysts. ChemCatChem, 2012, 4, 169-171.	3.7	227
96	Oneâ€Step Decatungstateâ€Photomediated PEGylation of Singleâ€Walled Carbon Nanotubes. ChemPlusChem, 2012, 77, 210-216.	2.8	17
97	Photochemical technologies assessed: the case of rose oxide. Green Chemistry, 2011, 13, 1876.	9.0	69
98	Significance of TiO2 Photocatalysis for Green Chemistry. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	3
99	A Tinâ€Free, Radical Photocatalyzed Addition to Vinyl Sulfones. Advanced Synthesis and Catalysis, 2011, 353, 3295-3300.	4.3	54
100	Predicting the UV spectrum of polyoxometalates by TDâ€ĐFT. Journal of Computational Chemistry, 2011, 32, 2983-2987.	3.3	31
101	Atomâ€Economical Synthesis of Unsymmetrical Ketones through Photocatalyzed CH Activation of Alkanes and Coupling with CO and Electrophilic Alkenes. Angewandte Chemie - International Edition, 2011, 50, 1869-1872.	13.8	151
102	Smooth Photocatalytic Preparation of 2â€6ubstituted 1,3â€Benzodioxoles. Chemistry - A European Journal, 2011, 17, 572-579.	3.3	60
103	Multi-walled carbon nanotubes as the gas chromatographic stationary phase: Role of their functionalization in the analysis of aliphatic alcohols and esters. Journal of Chromatography A, 2010, 1217, 7275-7281.	3.7	53
104	Titanium dioxide photocatalysis: An assessment of the environmental compatibility for the case of the functionalization of heterocyclics. Applied Catalysis B: Environmental, 2010, 99, 442-447.	20.2	22
105	Green chemistry: state of the art through an analysis of the literature. Green Chemistry Letters and Reviews, 2010, 3, 105-113.	4.7	30
106	Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones. Organic and Biomolecular Chemistry, 2010, 8, 4158.	2.8	72
107	Regio―and Stereoselectivity in the Decatungstate Photocatalyzed Alkylation of Alkenes by Alkylcyclohexanes. Chemistry - A European Journal, 2009, 15, 7949-7957.	3.3	34
108	Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 2009, 38, 1999.	38.1	920

#	Article	IF	CITATIONS
109	Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, , 7351.	4.1	123
110	Tetrabutylammonium Decatungstate (Chemo)selective Photocatalyzed, Radical CH Functionalization in Amides. Advanced Synthesis and Catalysis, 2008, 350, 2209-2214.	4.3	64
111	Photocatalysis for the Formation of the Câ^'C Bond. Chemical Reviews, 2007, 107, 2725-2756.	47.7	746