
Jeong-Tae Do

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823482/publications.pdf Version: 2024-02-01

IFONC-TAF DO

#	Article	IF	CITATIONS
1	A Simple Method for Generating Cerebral Organoids from Human Pluripotent Stem Cells. International Journal of Stem Cells, 2022, 15, 95-103.	1.8	3
2	Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biology, 2022, 23, 70.	8.8	8
3	Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells, 2022, 11, 1692.	4.1	2
4	Dichotomous role of Shp2 for naÃ⁻ve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Research and Therapy, 2022, 13, .	5.5	2
5	Inhibition of neural stem cell aging through the transient induction of reprogramming factors. Journal of Comparative Neurology, 2021, 529, 595-604.	1.6	9
6	DJ-1 Can Replace FGF-2 for Long-Term Culture of Human Pluripotent Stem Cells in Defined Media and Feeder-Free Condition. International Journal of Molecular Sciences, 2021, 22, 5954.	4.1	1
7	Evaluation of testicular toxicity upon fetal exposure to bisphenol A using an organ culture method. Chemosphere, 2021, 270, 129445.	8.2	13
8	Current Issues and Technical Advances in Cultured Meat Production: A Review. Food Science of Animal Resources, 2021, 41, 355-372.	4.1	39
9	Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells, 2021, 10, 1889.	4.1	9
10	High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. Journal of Mammalian Evolution, 2021, 28, 773-784.	1.8	2
11	Expression and Regulation of CD73 during the Estrous Cycle in Mouse Uterus. International Journal of Molecular Sciences, 2021, 22, 9403.	4.1	6
12	Efficient Generation of Neural Stem Cells from Embryonic Stem Cells Using a Three-Dimensional Differentiation System. International Journal of Molecular Sciences, 2021, 22, 8322.	4.1	4
13	Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death and Disease, 2020, 11, 14.	6.3	17
14	Generation of brain organoids from mouse ESCs via teratoma formation. Stem Cell Research, 2020, 49, 102100.	0.7	3
15	Mitochondrial and Metabolic Dynamics of Endometrial Stromal Cells During the Endometrial Cycle. Stem Cells and Development, 2020, 29, 1407-1415.	2.1	6
16	Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses?. Nanomaterials, 2020, 10, 1645.	4.1	162
17	Toxic Effects of Nonylphenol on Neonatal Testicular Development in Mouse Organ Culture. International Journal of Molecular Sciences, 2020, 21, 3491.	4.1	18
18	Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells. Redox Biology, 2020, 36, 101599.	9.0	25

Jeong-Tae Do

#	Article	IF	CITATIONS
19	Changes in the Expression of Mitochondrial Morphology-Related Genes during the Differentiation of Murine Embryonic Stem Cells. Stem Cells International, 2020, 2020, 1-12.	2.5	13
20	Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells. International Journal of Molecular Sciences, 2020, 21, 440.	4.1	26
21	Comparative analysis of the mitochondrial morphology, energy metabolism, and gene expression signatures in three types of blastocyst-derived stem cells. Redox Biology, 2020, 30, 101437.	9.0	20
22	Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. Journal of Clinical Medicine, 2020, 9, 966.	2.4	78
23	Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. Nanomaterials, 2019, 9, 969.	4.1	65
24	Generation of Mouse Parthenogenetic Epiblast Stem Cells and Their Imprinting Patterns. International Journal of Molecular Sciences, 2019, 20, 5428.	4.1	3
25	Derivation of primitive neural stem cells from humanâ€induced pluripotent stem cells. Journal of Comparative Neurology, 2019, 527, 3023-3033.	1.6	3
26	Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Frontiers in Bioengineering and Biotechnology, 2019, 7, 400.	4.1	55
27	Suppression of the ERK–SRF axis facilitates somatic cell reprogramming. Experimental and Molecular Medicine, 2018, 50, e448-e448.	7.7	17
28	Mitochondrial Dynamics in Stem Cells and Differentiation. International Journal of Molecular Sciences, 2018, 19, 3893.	4.1	114
29	Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Marine Drugs, 2018, 16, 484.	4.6	48
30	SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death and Disease, 2018, 9, 893.	6.3	7
31	Reprogramming of Extraembryonic Trophoblast Stem Cells into Embryonic Pluripotent State by Fusion with Embryonic Stem Cells. Stem Cells and Development, 2018, 27, 1350-1359.	2.1	2
32	Characterization of male germ cell markers in canine testis. Animal Reproduction Science, 2017, 182, 1-8.	1.5	17
33	Stage-specific expression of Sal-like protein 4 in boar testicular germ cells. Theriogenology, 2017, 101, 44-52.	2.1	8
34	CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes, 2017, 8, 148.	2.4	269
35	In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation. PLoS ONE, 2017, 12, e0170735.	2.5	13
36	Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. International Journal of Molecular Sciences, 2017, 18, 552.	4.1	37

JEONG-TAE DO

#	Article	IF	CITATIONS
37	β2-microglobulin gene duplication in cetartiodactyla remains intact only in pigs and possibly confers selective advantage to the species. PLoS ONE, 2017, 12, e0182322.	2.5	8
38	Generation of <i>in vivo</i> neural stem cells using partially reprogrammed cells defective in <i>in vitro</i> differentiation potential. Oncotarget, 2017, 8, 16456-16462.	1.8	4
39	Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 29643-29656.	1.8	11
40	Subculture of Germ Cell-Derived Colonies with GATA4-Positive Feeder Cells from Neonatal Pig Testes. Stem Cells International, 2016, 2016, 1-9.	2.5	10
41	Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation. Stem Cells International, 2016, 2016, 1-11.	2.5	5
42	Biochanin A Ameliorates Arsenic-Induced Hepato- and Hematotoxicity in Rats. Molecules, 2016, 21, 69.	3.8	45
43	Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. PLoS ONE, 2016, 11, e0163902.	2.5	115
44	Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS ONE, 2016, 11, e0147298.	2.5	12
45	Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports, 2016, 7, 911-926.	4.8	63
46	In Vivo Generation of Neural Stem Cells Through Teratoma Formation. Stem Cells and Development, 2016, 25, 1311-1317.	2.1	10
47	Mitochondrial Remodeling in Chicken Induced Pluripotent Stem-Like Cells. Stem Cells and Development, 2016, 25, 472-476.	2.1	9
48	Protein Kinase A Signaling Is Inhibitory for Reprogramming into Pluripotent Stem Cells. Stem Cells and Development, 2016, 25, 378-385.	2.1	5
49	Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE, 2016, 11, e0156491.	2.5	7
50	Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget, 2016, 7, 50914-50926.	1.8	8
51	Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells. Journal of Microbiology and Biotechnology, 2016, 26, 579-587.	2.1	30
52	In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Scientific Reports, 2015, 5, 13559.	3.3	10
53	PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. International Journal of Biochemistry and Cell Biology, 2015, 62, 54-61.	2.8	23
54	Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. International Journal of Molecular Medicine, 2015, 36, 255-262.	4.0	13

JEONG-TAE DO

#	Article	IF	CITATIONS
55	Mitochondrial and Metabolic Remodeling During Reprogramming and Differentiation of the Reprogrammed Cells. Stem Cells and Development, 2015, 24, 1366-1373.	2.1	49
56	Lack of Cytosolic Carboxypeptidase 1 Leads to Subfertility due to the Reduced Number of Antral Follicles in pcd3J-/- Females. PLoS ONE, 2015, 10, e0139557.	2.5	4
57	Increased Genomic Integrity of an Improved Protein-Based Mouse Induced Pluripotent Stem Cell Method Compared With Current Viral-Induced Strategies. Stem Cells Translational Medicine, 2014, 3, 599-609.	3.3	21
58	Ground-State Conditions Promote Robust Prdm14 Reactivation and Maintain an Active Dlk1-Dio3 Region during Reprogramming. Molecules and Cells, 2014, 37, 31-35.	2.6	4
59	Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Scientific Reports, 2014, 4, 7477.	3.3	41
60	Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection. Methods in Molecular Biology, 2014, 1357, 85-95.	0.9	3
61	Neural Stem Cells Differentiated From iPS Cells Spontaneously Regain Pluripotency. Stem Cells, 2014, 32, 2596-2604.	3.2	52
62	Activation of Peroxisome Proliferator-Activated Receptor δInhibits Angiotensin II-Induced Activation of Matrix Metalloproteinase-2 in Vascular Smooth Muscle Cells. Journal of Vascular Research, 2014, 51, 221-230.	1.4	10
63	Establishment of adult mouse testis-derived multipotent germ line stem cells and comparison of lineage-specific differentiation potential. Tissue Engineering and Regenerative Medicine, 2014, 11, 121-130.	3.7	2
64	Activation-Induced Deaminase-Coupled DNA Demethylation Is Not Crucial for the Generation of Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 209-218.	2.1	10
65	Reactivation of inactive X chromosome and post-transcriptional reprogramming of Xist in induced pluripotent stem cells. Journal of Cell Science, 2014, 128, 81-7.	2.0	15
66	Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation. Journal of Dermatological Science, 2014, 76, 44-50.	1.9	19
67	Conversion of Partially Reprogrammed Cells to Fully Pluripotent Stem Cells Is Associated with Further Activation of Stem Cell Maintenance- and Gamete Generation-Related Genes. Stem Cells and Development, 2014, 23, 2637-2648.	2.1	8
68	Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Research, 2014, 12, 506-516.	0.7	13
69	Ligand-activated PPARδ modulates the migration and invasion of melanoma cells by regulating Snail expression. American Journal of Cancer Research, 2014, 4, 674-82.	1.4	15
70	Activation of pluripotency genes by a nanotubeâ€mediated protein delivery system. Molecular Reproduction and Development, 2013, 80, 1000-1008.	2.0	15
71	Conversion of genomic imprinting by reprogramming and redifferentiation. Journal of Cell Science, 2013, 126, 2516-24.	2.0	24
72	The use of aggregates of purified cardiomyocytes derived from human ESCs forÂfunctional engraftment after myocardial infarction. Biomaterials, 2013, 34, 4013-4026.	11.4	51

JEONG-TAE DO

#	Article	IF	CITATIONS
73	Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke. Cell Transplantation, 2013, 22, 1427-1440.	2.5	69
74	Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochemical Journal, 2012, 446, 359-371.	3.7	104
75	Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 2054-2062.	3.2	167
76	Reestablishment of the inactive X chromosome to the ground state through cell fusion-induced reprogramming. Cellular and Molecular Life Sciences, 2012, 69, 4067-4077.	5.4	3
77	Neuronal Differentiation of a Human Induced Pluripotent Stem Cell Line (FS-1) Derived from Newborn Foreskin Fibroblasts. International Journal of Stem Cells, 2012, 5, 140-145.	1.8	9
78	Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells. PLoS ONE, 2011, 6, e21367.	2.5	6
79	Gene Expression Profiles in CHA3 and CHA4 Human Embryonic Stem Cells and Embryoid Bodies. Molecules and Cells, 2011, 31, 315-326.	2.6	10
80	A system for treating ischemic disease using human embryonic stem cell-derived endothelial cells without direct incorporation. Biomaterials, 2011, 32, 6445-6455.	11.4	36
81	Pluripotent Hybrid Cells Contribute to Extraembryonic as well as Embryonic Tissues. Stem Cells and Development, 2011, 20, 1063-1069.	2.1	12
82	Efficient Derivation of Pluripotent Stem Cells from siRNA-Mediated <i>Cdx2</i> -Deficient Mouse Embryos. Stem Cells and Development, 2011, 20, 485-493.	2.1	7
83	Reprogrammed Pluripotent Stem Cells from Somatic Cells. International Journal of Stem Cells, 2011, 4, 1-8.	1.8	33
84	Silica coated titania nanotubes for drug delivery system. Materials Letters, 2010, 64, 1664-1667.	2.6	17
85	Kinetics of reprogramming in cell fusion hybrids. International Journal of Developmental Biology, 2010, 54, 1697-1702.	0.6	2
86	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	3.4	107
87	Cell Fusion-Induced Reprogramming. Methods in Molecular Biology, 2010, 636, 179-190.	0.9	12
88	Epiblast Stem Cell Subpopulations Represent Mouse Embryos of Distinct Pregastrulation Stages. Cell, 2010, 143, 617-627.	28.9	195
89	Reprogramming of Xist against the pluripotent state in fusion hybrids. Journal of Cell Science, 2009, 122, 4122-4129.	2.0	16
90	Generation of Parthenogenetic Induced Pluripotent Stem Cells from Parthenogenetic Neural Stem Cells. Stem Cells. 2009. 27. 2962-2968.	3.2	13

Jeong-Tae Do

#	Article	IF	CITATIONS
91	Epigenetic Hierarchy Governing <i>Nestin</i> Expression. Stem Cells, 2009, 27, 1088-1097.	3.2	35
92	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	8.7	61
93	Methylation status of putative differentially methylated regions of porcine <i>IGF2</i> and <i>H19</i> . Molecular Reproduction and Development, 2008, 75, 777-784.	2.0	34
94	Pluripotential Reprogramming of the Somatic Genome in Hybrid Cells Occurs with the First Cell Cycle. Stem Cells, 2008, 26, 445-454.	3.2	79
95	Enhanced Reprogramming of Xist by Induced Upregulation of Tsix and Dnmt3a. Stem Cells, 2008, 26, 2821-2831.	3.2	31
96	A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 2, 525-528.	11.1	664
97	A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 3, 119.	11.1	4
98	Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem Cell, 2008, 3, 568-574.	11.1	837
99	Erasure of Cellular Memory by Fusion with Pluripotent Cells. Stem Cells, 2007, 25, 1013-1020.	3.2	40
100	Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Reviews and Reports, 2006, 2, 257-264.	5.6	42
101	Self-renewal of embryonic stem cells by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17266-17271.	7.1	296
102	Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Reproduction, Fertility and Development, 2005, 17, 143.	0.4	29
103	Nuclei of Embryonic Stem Cells Reprogram Somatic Cells. Stem Cells, 2004, 22, 941-949.	3.2	254
104	Expression of IGF2 and IGF receptor mRNA in bovine nuclear transferred embryos. Zygote, 2003, 11, 245-252.	1.1	44
105	Fate of Donor Mitochondrial DNA in Cloned Bovine Embryos Produced by Microinjection of Cumulus Cells. Biology of Reproduction, 2002, 67, 555-560.	2.7	40
106	In vitro development of reconstructed bovine embryos and fate of donor mitochondria following nuclear injection of cumulus cells. Zygote, 2001, 9, 211-218.	1.1	14