Anita B Hjelmeland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234472/publications.pdf

Version: 2024-02-01

76 papers 14,412 citations

36 h-index 66 g-index

82 all docs

82 docs citations

82 times ranked 16314 citing authors

#	Article	IF	Citations
1	Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444, 756-760.	27.8	5,600
2	Stem Cell–like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor. Cancer Research, 2006, 66, 7843-7848.	0.9	1,239
3	Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell, 2009, 15, 501-513.	16.8	1,196
4	The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 2009, 8, 3274-3284.	2.6	708
5	Integrin Alpha 6 Regulates Glioblastoma Stem Cells. Cell Stem Cell, 2010, 6, 421-432.	11.1	597
6	Notch Promotes Radioresistance of Glioma Stem Cells Â. Stem Cells, 2010, 28, 17-28.	3.2	505
7	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	14.8	408
8	Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth. Cancer Research, 2008, 68, 6043-6048.	0.9	376
9	c-Myc Is Required for Maintenance of Glioma Cancer Stem Cells. PLoS ONE, 2008, 3, e3769.	2.5	352
10	Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth. Stem Cells, 2009, 27, 2393-2404.	3.2	300
11	Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2. Cell, 2011, 146, 53-66.	28.9	280
12	Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell, 2011, 19, 498-511.	16.8	233
13	Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition. Stem Cells, 2008, 26, 3027-3036.	3.2	207
14	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	5.3	151
15	SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Molecular Cancer Therapeutics, 2004, 3, 737-45.	4.1	150
16	Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. PLoS ONE, 2011, 6, e24807.	2.5	125
17	Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes and Development, 2014, 28, 1085-1100.	5.9	122
18	Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth. PLoS Biology, 2010, 8, e1000319.	5.6	117

#	Article	IF	Citations
19	Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes and Development, 2012, 26, 1247-1262.	5.9	96
20	Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo. JCl Insight, 2017, 2, .	5.0	94
21	Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics, 2021, 11, 665-683.	10.0	89
22	Selective Deficiency of the "Bone-related―Runx2-II Unexpectedly Preserves Osteoblast-mediated Skeletogenesis. Journal of Biological Chemistry, 2004, 279, 20307-20313.	3.4	88
23	Turning Cancer Stem Cells Inside Out: An Exploration of Glioma Stem Cell Signaling Pathways. Journal of Biological Chemistry, 2009, 284, 16705-16709.	3.4	87
24	Glioma Stem Cell Maintenance: The Role of the Microenvironment. Current Pharmaceutical Design, 2011, 17, 2386-2401.	1.9	76
25	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	6.4	76
26	The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 175-188.	7.4	74
27	Erythropoietin Receptor Signaling through STAT3 Is Required for Glioma Stem Cell Maintenance. Genes and Cancer, 2010, 1, 50-61.	1.9	71
28	Twisted tango: brain tumor neurovascular interactions. Nature Neuroscience, 2011, 14, 1375-1381.	14.8	70
29	The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. Journal of Biological Chemistry, 2018, 293, 5659-5667.	3.4	59
30	Aptamer Identification of Brain Tumor–Initiating Cells. Cancer Research, 2013, 73, 4923-4936.	0.9	57
31	Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells. Stem Cell Reports, 2015, 4, 899-913.	4.8	47
32	NOS Expression and NO Function in Glioma and Implications for Patient Therapies. Antioxidants and Redox Signaling, 2017, 26, 986-999.	5 . 4	47
33	The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion. Molecular Cancer Therapeutics, 2007, 6, 2449-2457.	4.1	43
34	Anti-cancer effects of the HuR inhibitor, MS-444, in malignant glioma cells. Cancer Biology and Therapy, 2019, 20, 979-988.	3.4	43
35	Loss of Phosphatase and Tensin Homologue Increases Transforming Growth Factor β–Mediated Invasion with Enhanced SMAD3 Transcriptional Activity. Cancer Research, 2005, 65, 11276-11281.	0.9	42
36	A novel mitochondrial pool of Cyclin E, regulated by Drp1, is linked to cell density dependent cell proliferation. Journal of Cell Science, 2015, 128, 4171-82.	2.0	41

#	Article	IF	CITATIONS
37	Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biology, 2021, 44, 101953.	9.0	39
38	Microenvironmental Variables Must Influence Intrinsic Phenotypic Parameters of Cancer Stem Cells to Affect Tumourigenicity. PLoS Computational Biology, 2014, 10, e1003433.	3.2	37
39	Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. Journal of Ovarian Research, 2019, 12, 93.	3.0	36
40	HPAanalyze: an R package that facilitates the retrieval and analysis of the Human Protein Atlas data. BMC Bioinformatics, 2019, 20, 463.	2.6	33
41	Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules, 2020, 10, 1357.	4.0	28
42	Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro-Oncology, 2018, 20, 1055-1067.	1.2	27
43	Deletion of the RNA regulator HuR in tumorâ€associated microglia and macrophages stimulates antiâ€tumor immunity and attenuates glioma growth. Glia, 2019, 67, 2424-2439.	4.9	26
44	New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor initiating cells. Journal of Cell Science, 2019, 132, .	2.0	25
45	Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. Journal of Neuro-Oncology, 2017, 132, 219-229.	2.9	24
46	Identification of Compounds That Decrease Glioblastoma Growth and Glucose Uptake <i>in Vitro</i> ACS Chemical Biology, 2018, 13, 2048-2057.	3.4	24
47	Metabolic, autophagic, and mitophagic activities in cancer initiation and progression. Biomedical Journal, 2016, 39, 98-106.	3.1	23
48	Development of a Sox2 reporter system modeling cellular heterogeneity in glioma. Neuro-Oncology, 2015, 17, 361-371.	1.2	22
49	IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Communication and Signaling, 2018, 16, 61.	6.5	20
50	Chromodomain Helicase DNA-Binding Protein 7 Is Suppressed in the Perinecrotic/Ischemic Microenvironment and Is a Novel Regulator of Glioblastoma Angiogenesis. Stem Cells, 2019, 37, 453-462.	3.2	20
51	A role for GLUT3 in glioblastoma cell invasion that is not recapitulated by GLUT1. Cell Adhesion and Migration, 2021, 15, 101-115.	2.7	20
52	The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Research, 2020, 80, 5-16.	0.9	17
53	Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers, 2022, 14, 2339.	3.7	17
54	Kinomic profiling of glioblastoma cells reveals PLCG1 as a target in restricted glucose. Biomarker Research, 2018, 6, 22.	6.8	14

#	Article	IF	Citations
55	SOD2 acetylation and deacetylation: Another tale of Jekyll and Hyde in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23376-23378.	7.1	13
56	Method for Efficient Transduction of Cancer Stem Cells. Journal of Cancer Stem Cell Research, 2014, 1, 1.	1.1	13
57	The Quest for Self-Identity: Not All Cancer Stem Cells Are the Same. Clinical Cancer Research, 2012, 18, 3495-3498.	7.0	12
58	UAB30, a novel RXR agonist, decreases tumorigenesis and leptomeningeal disease in group 3 medulloblastoma patient-derived xenografts. Journal of Neuro-Oncology, 2018, 140, 209-224.	2.9	11
59	Targeting Acid Ceramidase Inhibits Glioblastoma Cell Migration through Decreased AKT Signaling. Cells, 2022, 11, 1873.	4.1	9
60	Recasting the Cancer Stem Cell Hypothesis: Unification Using a Continuum Model of Microenvironmental Forces. Current Stem Cell Reports, 2019, 5, 22-30.	1.6	7
61	Fine-tuned repression of Drp1-driven mitochondrial fission primes a â€~stem/progenitor-like state' to support neoplastic transformation. ELife, 2021, 10, .	6.0	7
62	The Arf activator GBF1 localizes to plasma membrane sites involved in cell adhesion and motility. Cellular Logistics, 2017, 7, e1308900.	0.9	6
63	Molecular Targeting of Neural Cancer Stem Cells: TTAGGG, You're It!. Clinical Cancer Research, 2011, 17, 3-5.	7.0	4
64	Novel dopamine receptor 3 antagonists inhibit the growth of primary and temozolomide resistant glioblastoma cells. PLoS ONE, 2021, 16, e0250649.	2.5	4
65	Metastatic human hepatoblastoma cells exhibit enhanced tumorigenicity, invasiveness and a stem cell-like phenotype. Journal of Pediatric Surgery, 2022, 57, 1018-1025.	1.6	4
66	Modeling Physiologic Microenvironments in Three-Dimensional Microtumors Maintains Brain Tumor Initiating Cells. Journal of Cancer Stem Cell Research, 2017, 5, 1.	1.1	3
67	MB-41INTRAVENTRICULAR ONCOLYTIC ENGINEERED HERPES SIMPLEX VIRUS PROLONGS SURVIVAL AND REDUCES SPINAL METASTASES IN MICE BEARING HUMAN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2016, 18, iii106.1-iii106.	1.2	0
68	RBIO-05. miRNAs THAT CONFER GLIOBLASTOMA RESISTANCE: IS THE COMBINATION MERELY AÂSUM OF THE PARTS?. Neuro-Oncology, 2016, 18, vi173-vi173.	1.2	0
69	TMOD-18. THREE-DIMENSIONAL MICROTUMORS IN PHYSIOLOGIC MICROENVIRONMENTS MAINTAIN BRAIN TUMOR INITIATING CELLS. Neuro-Oncology, 2016, 18, vi210-vi210.	1.2	0
70	Novel Retinoid UAB30 Decreases Tumorigenicity and Cancer Stem Cell Maintenance in Human Neuroblastoma Patient-Derived Xenografts. Journal of the American College of Surgeons, 2016, 223, e160-e161.	0.5	0
71	DDIS-24. DECREASE IN GLIOBLASTOMA GROWTH IN VITRO WITH TREATMENT OF NOVEL ANALOGS OF GLUCOSE TRANSPORTER INHIBITORS. Neuro-Oncology, 2019, 21, vi68-vi68.	1.2	0
72	The Rationale for and Effects of Targeting TGF- \hat{l}^2 for Glioma Therapy. , 2008, , 335-351.		0

#	Article	IF	CITATIONS
73	Heterologous expression of microbial flavohemoglobin can modulate the effects of nitric oxide in mammalian cells. FASEB Journal, 2010, 24, 871.2.	0.5	O
74	The Cancer Stem Cell Paradigm. , 2011, , 225-248.		0
75	Abstract 3370: DNA repair in glioma stem cell-mediated radiation resistance. , 2012, , .		O
76	Abstract B44: Acquisition of meiotic DNA repair regulators maintain genome stability in glioblastoma. , 2015, , .		0