
Ulf Olsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234391/publications.pdf Version: 2024-02-01

LILE OLSSON

#	Article	IF	CITATIONS
1	Colloid phase behavior. , 2022, , 183-199.		Ο
2	Comparing α-Synuclein Fibrils Formed in the Absence and Presence of a Model Lipid Membrane: A Small and Wide-Angle X-Ray Scattering Study. , 2022, 1, .		5
3	Characterization of the Colloidal Properties of Dissolved Organic Matter From Forest Soils. Frontiers in Soil Science, 2022, 2, .	2.2	4
4	A novel X-ray diffraction approach to assess the crystallinity of regenerated cellulose fibers. IUCrJ, 2022, 9, 492-496.	2.2	1
5	The colloidal structure of a cellulose fiber. Cellulose, 2021, 28, 2779-2789.	4.9	2
6	Adsorption of Anionic Dyes Using a Poly(styrene- <i>block</i> -4-vinylpyridine) Block Copolymer Organogel. Langmuir, 2021, 37, 3996-4006.	3.5	22
7	SAXS/WAXS Investigation of Amyloid-β(16-22) Peptide Nanotubes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654349.	4.1	9
8	Multiscale Structural Elucidation of Peptide Nanotubes by X-Ray Scattering Methods. Frontiers in Bioengineering and Biotechnology, 2021, 9, 654339.	4.1	4
9	Solubility of Aβ40 peptide. Jcis Open, 2021, 4, 100024.	3.2	5
10	Strong inhibition of peptide amyloid formation byÂaÂfatty acid. Biophysical Journal, 2021, 120, 4536-4546.	0.5	5
11	Editorial: Fibrous Assemblies: From Synthesis and Nanostructure Characterization to Materials Development and Application. Frontiers in Bioengineering and Biotechnology, 2021, 9, 778094.	4.1	0
12	On the Cluster Formation of α-Synuclein Fibrils. Frontiers in Molecular Biosciences, 2021, 8, 768004.	3.5	2
13	Amyloid β 42 fibril structure based on small-angle scattering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
14	Tube to ribbon transition in a self-assembling model peptide system. Physical Chemistry Chemical Physics, 2020, 22, 18320-18327.	2.8	12
15	Two Dimensional Oblique Molecular Packing within a Model Peptide Ribbon Aggregate. ChemPhysChem, 2020, 21, 1519-1523.	2.1	9
16	Comparison of small-angle neutron and X-ray scattering for studying cortical bone nanostructure. Scientific Reports, 2020, 10, 14552.	3.3	6
17	NACore Amyloid Formation in the Presence of Phospholipids. Frontiers in Physiology, 2020, 11, 592117.	2.8	8
18	Slow Dissolution Kinetics of Model Peptide Fibrils. International Journal of Molecular Sciences, 2020, 21, 7671.	4.1	3

#	Article	IF	CITATIONS
19	Self-Assembly of Model Amphiphilic Peptides in Nonaqueous Solvents: Changing the Driving Force for Aggregation Does Not Change the Fibril Structure. Langmuir, 2020, 36, 8451-8460.	3.5	7
20	Revisiting the Dissolution of Cellulose in NaOH as "Seen―by X-rays. Polymers, 2020, 12, 342.	4.5	14
21	Arrested dynamics in a model peptide hydrogel system. Soft Matter, 2020, 16, 2642-2651.	2.7	13
22	Characterization of Iron and Organic Carbon Colloids in Boreal Rivers and Their Fate at High Salinity. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005517.	3.0	14
23	The cooling process effect on the bilayer phase state of the CTAC/cetearyl alcohol/water surfactant gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124821.	4.7	21
24	Aggregation behavior of the amyloid model peptide NACore. Quarterly Reviews of Biophysics, 2019, 52, .	5.7	14
25	Fibril Charge Affects α-Synuclein Hydrogel Rheological Properties. Langmuir, 2019, 35, 16536-16544.	3.5	18
26	Real time MRI to elucidate the functionality of coating films intended for modified release. Journal of Controlled Release, 2019, 311-312, 117-124.	9.9	3
27	Rapid confocal imaging of vesicle-to-sponge phase droplet transition in dilute dispersions of the C10E3 surfactant. Scientific Reports, 2019, 9, 2292.	3.3	1
28	Twisted Ribbon Aggregates in a Model Peptide System. Langmuir, 2019, 35, 5802-5808.	3.5	16
29	Shape and Phase Transitions in a PEGylated Phospholipid System. Langmuir, 2019, 35, 3999-4010.	3.5	25
30	Particles with tunable wettability for solid-stabilized emulsions. Journal of Dispersion Science and Technology, 2019, 40, 219-230.	2.4	4
31	Microstructures of cellulose coagulated in water and alcohols from 1-ethyl-3-methylimidazolium acetate: contrasting coagulation mechanisms. Cellulose, 2019, 26, 1545-1563.	4.9	11
32	Cellulose gelation in NaOH solutions is due to cellulose crystallization. Cellulose, 2018, 25, 3205-3210.	4.9	23
33	Ferrihydrite Nanoparticle Aggregation Induced by Dissolved Organic Matter. Journal of Physical Chemistry A, 2018, 122, 7730-7738.	2.5	26
34	Multilamellar Vesicle Formation Probed by Rheo-NMR and Rheo-SALS under Large Amplitude Oscillatory Shear. Langmuir, 2018, 34, 8314-8325.	3.5	15
35	Structural analysis of Ioncell-F fibres from birch wood. Carbohydrate Polymers, 2018, 181, 893-901.	10.2	33
36	Surfactant Self-Assembly Structures at Interfaces, in Polymer Solutions, and in Bulk: Micellar Size		1

and Connectivity. , 2018, , 101-126.

1

#	Article	IF	CITATIONS
37	On the dissolution state of cellulose in cold alkali solutions. Cellulose, 2017, 24, 2003-2015.	4.9	29
38	Formation of reverse vesicles in silicone surfactant systems. Journal of Dispersion Science and Technology, 2017, 38, 1804-1810.	2.4	1
39	Stable, metastable and unstable cellulose solutions. Royal Society Open Science, 2017, 4, 170487.	2.4	17
40	On the dissolution of cellulose in tetrabutylammonium acetate/dimethyl sulfoxide: a frustrated solvent. Cellulose, 2017, 24, 3645-3657.	4.9	36
41	Alternative Diesel Fuel: Microemulsion Phase Behavior and Combustion Properties. Journal of Dispersion Science and Technology, 2016, 37, 894-899.	2.4	10
42	Microemulsions of Record Low Amphiphile Concentrations Are Affected by the Ambient Gravitational Field. Journal of Physical Chemistry B, 2016, 120, 6074-6079.	2.6	9
43	Portal Stability Controls Dynamics of DNA Ejection from Phage. Journal of Physical Chemistry B, 2016, 120, 6421-6429.	2.6	6
44	On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide. Biomacromolecules, 2016, 17, 2873-2881.	5.4	38
45	Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species. Calcified Tissue International, 2016, 99, 76-87.	3.1	12
46	Bone mineral crystal size and organization vary across mature rat bone cortex. Journal of Structural Biology, 2016, 195, 337-344.	2.8	46
47	Cellulose–solvent interactions from self-diffusion NMR. Cellulose, 2016, 23, 2753-2758.	4.9	24
48	Surfactant-free alternative fuel: Phase behavior and diffusion properties. Journal of Colloid and Interface Science, 2016, 463, 173-179.	9.4	14
49	A Study in Semenogelin I Hydrogel Aggregation Kinetics. Biophysical Journal, 2015, 108, 484a.	0.5	0
50	Phase Coexistence in a Dynamic Phase Diagram. ChemPhysChem, 2015, 16, 2459-2465.	2.1	10
51	Tailoring Supramolecular Nanotubes by Bile Salt Based Surfactant Mixtures. Angewandte Chemie, 2015, 127, 7124-7127.	2.0	7
52	Tailoring Supramolecular Nanotubes by Bile Salt Based Surfactant Mixtures. Angewandte Chemie - International Edition, 2015, 54, 7018-7021.	13.8	37
53	Emulsion Ripening through Molecular Exchange at Droplet Contacts. Angewandte Chemie - International Edition, 2015, 54, 1452-1455.	13.8	21
54	Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device. Langmuir, 2015, 31, 4361-4371.	3.5	27

#	Article	IF	CITATIONS
55	Phase Behavior of Bicontinuous and Water/Diesel Fuel Microemulsions Using Nonionic Surfactants Combined with Hydrophilic Alcohol Ethoxylates. Journal of Dispersion Science and Technology, 2015, 36, 10-17.	2.4	24
56	Colloid Phase Behavior. , 2014, , 159-176.		1
57	Evaluation of composition and mineral structure of callus tissue in rat femoral fracture. Journal of Biomedical Optics, 2014, 19, 025003.	2.6	19
58	PEGylated cationic liposome–DNA complexation in brine is pathway-dependent. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 398-412.	2.6	33
59	The undulation force; theoretical results versus experimental demonstrations. Advances in Colloid and Interface Science, 2014, 208, 10-13.	14.7	12
60	Sugar–Bile Acid-Based Bolaamphiphiles: From Scrolls to Monodisperse Single-Walled Tubules. Langmuir, 2014, 30, 6358-6366.	3.5	27
61	Multilamellar Vesicle Formation from a Planar Lamellar Phase under Shear Flow. Langmuir, 2014, 30, 8316-8325.	3.5	37
62	Aqueous Self-Assembly within the Homologous Peptide Series A _{<i>n</i>} K. Langmuir, 2014, 30, 10072-10079.	3.5	12
63	Dynamic Phase Diagram of a Nonionic Surfactant Lamellar Phase. Journal of Physical Chemistry B, 2014, 118, 3622-3629.	2.6	17
64	Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly. Macromolecules, 2014, 47, 3428-3435.	4.8	2
65	Between Peptides and Bile Acids: Self-Assembly of Phenylalanine Substituted Cholic Acids. Journal of Physical Chemistry B, 2013, 117, 9248-9257.	2.6	33
66	Microfluidics with In-Situ Small-Angle X-Ray Scattering: A Tool to Investigate the Neurofilament Self-Assembly Mechanism. Biophysical Journal, 2013, 104, 141a.	0.5	1
67	Embedding DNA in surfactant mesophases: The phase diagram of the ternary system dodecyltrimethylammonium–DNA/monoolein/water in comparison to the DNA-free analogue. Journal of Colloid and Interface Science, 2013, 394, 360-367.	9.4	8
68	Potential Determining Salts in Microemulsions: Interfacial Distribution and Effect on the Phase Behavior. Langmuir, 2013, 29, 15738-15746.	3.5	11
69	Study of the micelle-to-vesicle transition and smallest possible vesicle size by temperature-jumps. Journal of Colloid and Interface Science, 2013, 396, 173-177.	9.4	4
70	Rheochaos and flow instability phenomena in a nonionic lamellar phase. Soft Matter, 2013, 9, 1133-1140.	2.7	25
71	Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules. Soft Matter, 2013, 9, 1540-1555.	2.7	10
72	Encapsulation of DNA in Macroscopic and Nanosized Calcium Alginate Gel Particles. Langmuir, 2013, 29, 15926-15935.	3.5	26

#	Article	IF	CITATIONS
73	Morphological investigation of polydisperse asymmetric block copolymer systems of poly(styrene) and poly(methacrylic acid) in the strong segregation regime. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1657-1671.	2.1	5
74	Entropic forces between fluid layers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2944-E2944.	7.1	5
75	Water-Diesel Microemulsions Stabilized by an Anionic Extended Surfactant and a Cationic Hydrotrope. Journal of Dispersion Science and Technology, 2012, 33, 516-520.	2.4	9
76	Phase Behavior of Microemulsions Formulated with Sodium Alkyl Polypropylene Oxide Sulfate and a Cationic Hydrotrope. Journal of Dispersion Science and Technology, 2012, 33, 369-373.	2.4	5
77	Transient and Steady-State Shear Banding in a Lamellar Phase as Studied by Rheo-NMR. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1293-1314.	2.8	17
78	Unusual Phase Behavior in a Two-Component System Catanionic Surfactant-Water: From Lamellar-Lamellar to Vesicle-Micelle Coexistence. Statistical Science and Interdisciplinary Research, 2012, , 69-84.	0.0	0
79	Amino acid–bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. Chemical Communications, 2012, 48, 12011.	4.1	34
80	The Effect of Formation Pathway on the Structure and Stability of PEGylated Lipoplexes at Physiological Conditions: Implications for Gene Delivery. Biophysical Journal, 2012, 102, 637a.	0.5	0
81	Aqueous phase behavior of polyelectrolytes with amphiphilic counterions modulated by cyclodextrin: the role of polyion flexibility. Physical Chemistry Chemical Physics, 2012, 14, 9574.	2.8	6
82	DNA with amphiphilic counterions: tuning colloidal DNA with cyclodextrin. Soft Matter, 2012, 8, 4988.	2.7	8
83	Cyclodextrin–Surfactant Coassembly Depends on the Cyclodextrin Ability To Crystallize. Langmuir, 2012, 28, 2387-2394.	3.5	23
84	Impact of branching on the viscoelasticity of wormlike reverse micelles. Soft Matter, 2012, 8, 10941.	2.7	43
85	DNA with Double-Chained Amphiphilic Counterions and Its Interaction with Lecithin. Langmuir, 2012, 28, 13698-13704.	3.5	9
86	Preparation of Calcium Alginate Nanoparticles Using Water-in-Oil (W/O) Nanoemulsions. Langmuir, 2012, 28, 4131-4141.	3.5	103
87	Complexation between DNA and surfactants and lipids: phase behavior and molecular organization. Soft Matter, 2012, 8, 11022.	2.7	34
88	Peptide nanotube formation: a crystal growth process. Soft Matter, 2012, 8, 7463.	2.7	36
89	Rheological and rheo-SALS investigation of the multi-lamellar vesicle formation in the C12E3/D2O system. Journal of Colloid and Interface Science, 2012, 367, 537-539.	9.4	24
90	Structural transitions induced by shear flow and temperature variation in a nonionic surfactant/water system. Journal of Colloid and Interface Science, 2012, 372, 32-39.	9.4	31

#	Article	IF	CITATIONS
91	Nanotubes and bilayers in a model peptide system. Soft Matter, 2011, 7, 4868.	2.7	29
92	Planar lamellae and onions: a spatially resolved rheo–NMR approach to the shear-induced structural transformations in a surfactant model system. Soft Matter, 2011, 7, 4938.	2.7	33
93	Fusion and fission of catanionic bilayers. Soft Matter, 2011, 7, 1686.	2.7	6
94	Effect of Shear Rates on the MLV Formation and MLV Stability Region in the C12E5/D2O System: Rheology and Rheo-NMR and Rheo-SANS Experiments. Langmuir, 2011, 27, 2088-2092.	3.5	25
95	Colloidal Structure and Physical Properties of Gel Networks Containing Anionic Surfactant and Fatty Alcohol Mixture. Journal of Dispersion Science and Technology, 2011, 32, 807-815.	2.4	15
96	Superswollen Microemulsions Stabilized by Shear and Trapped by a Temperature Quench. Langmuir, 2011, 27, 10447-10454.	3.5	15
97	Influence of End-Capping on the Self-Assembly of Model Amyloid Peptide Fragments. Journal of Physical Chemistry B, 2011, 115, 2107-2116.	2.6	52
98	Multi-lamellar vesicle formation in a long-chain nonionic surfactant: C16E4/D2O system. Journal of Colloid and Interface Science, 2011, 362, 1-4.	9.4	25
99	Fusion of Nonionic Vesicles. Langmuir, 2010, 26, 5421-5427.	3.5	7
100	Orderâ 'Disorder Transition of Nonionic Onions under Shear Flow. Langmuir, 2010, 26, 7988-7995.	3.5	23
101	Formation of 10â^100 nm Size-Controlled Emulsions through a Sub-PIT Cycle. Langmuir, 2010, 26, 3860-3867.	3.5	71
102	Lamellar phase separation in a centrifugal field. A method for measuring interbilayer forces. Soft Matter, 2010, 6, 4520.	2.7	13
103	Structure of single-wall peptide nanotubes: in situ flow aligning X-ray diffraction. Chemical Communications, 2010, 46, 6270.	4.1	62
104	Subgel transition in diluted vesicular DODAB dispersions. Soft Matter, 2009, 5, 1735.	2.7	38
105	Amorphous Drug Nanosuspensions. 3. Particle Dissolution and Crystal Growth. Langmuir, 2007, 23, 9866-9874.	3.5	118
106	Incomplete Lipid Chain Freezing of Sonicated Vesicular Dispersions of Double-Tailed Ionic Surfactants. Langmuir, 2007, 23, 10455-10462.	3.5	15
107	Effects of oil on the curvature elastic properties of nonionic surfactant films: Thermodynamics of balanced microemulsions. Physical Review E, 2006, 73, 041506.	2.1	23
108	Thermal transitions of DODAB vesicular dispersions. Colloid and Polymer Science, 2005, 283, 1376-1381.	2.1	28

#	Article	IF	CITATIONS
109	Temperature Quenched DODAB Dispersions:Â Fluid and Solid State Coexistence and Complex Formation with Oppositely Charged Surfactant. Langmuir, 2004, 20, 3906-3912.	3.5	58
110	Effect of Flow Reversal on the Shear Induced Formation of Multilamellar Vesicles. Journal of Physical Chemistry B, 2004, 108, 6328-6335.	2.6	20
111	Dynamic phase diagram and onion formation in the system C10E3/D2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228, 85-90.	4.7	51
112	On the Ripening of Vesicle Dispersions. Journal of Physical Chemistry B, 2002, 106, 5135-5138.	2.6	19
113	Macroemulsions from the Perspective of Microemulsions. , 2001, , 95-107.		2
114	Globular and bicontinuous phases of nonionic surfactant films. Advances in Colloid and Interface Science, 1994, 49, 113-146.	14.7	195
115	On the flexible surface model of sponge phases and microemulsions. Langmuir, 1993, 9, 365-368.	3.5	51
116	Isotropic bicontinuous solutions in surfactant-Solvent systems: the L3 phase. The Journal of Physical Chemistry, 1989, 93, 4243-4253.	2.9	189