Oren Ostersetzer-Biran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MISF2 Encodes an Essential Mitochondrial Splicing Cofactor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 2670.	4.1	3
2	Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes, 2022, 13, 1137.	2.4	4
3	nMAT3 is an essential maturase splicing factor required for holoâ€complexÂl biogenesis and embryo development in <i>Arabidopsis thaliana</i> plants. Plant Journal, 2021, 106, 1128-1147.	5.7	15
4	Plant organellar RNA editing: what 30Âyears of research has revealed. Plant Journal, 2020, 101, 1040-1056.	5.7	193
5	Topologies of <i>N⁶</i> â€adenosine methylation (m ⁶ A) in land plant mitochondria and their putative effects on organellar gene expression. Plant Journal, 2020, 101, 1269-1286.	5.7	26
6	Why so Complex? The Intricacy of Genome Structure and Gene Expression, Associated with Angiosperm Mitochondria, May Relate to the Regulation of Embryo Quiescence or Dormancy—Intrinsic Blocks to Early Plant Life. Plants, 2020, 9, 598.	3.5	20
7	Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana. Plant and Cell Physiology, 2020, 61, 1080-1094.	3.1	12
8	The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. Frontiers in Plant Science, 2020, 11, 140.	3.6	11
9	Aminoacyl-tRNA synthetases and translational quality control in plant mitochondria. Mitochondrion, 2020, 54, 15-20.	3.4	6
10	The complete plastid genome sequence and the photosynthetic activity of the putative mycoheterotrophic orchid Limodorum abortivum. Israel Journal of Plant Sciences, 2019, 66, 69-88.	0.5	4
11	Control of organelle gene expression by the mitochondrial transcription termination factor mTERF22 in Arabidopsis thaliana plants. PLoS ONE, 2018, 13, e0201631.	2.5	37
12	PLANT MITOCHONDRIA GROUP INTRONS SPLICING: A WINDOW INTO THE EVOLUTION OF THE NUCLEAR SPLICEOSOMAL MACHINERIES. , 2018, , .		0
13	The First Mitochondrial Genomics and Evolution SMBE-Satellite Meeting: A New Scientific Symbiosis. Genome Biology and Evolution, 2017, 9, 3054-3058.	2.5	Ο
14	Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria. International Journal of Molecular Sciences, 2017, 18, 2428.	4.1	34
15	The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria. Plant Cell, 2016, 28, 2805-2829.	6.6	91
16	Respiratory complex I and embryo development. Journal of Experimental Botany, 2016, 67, 1205-1207.	4.8	19
17	Organellar maturases: A window into the evolution of the spliceosome. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 798-808.	1.0	72
18	Group II intron splicing factors in plant mitochondria. Frontiers in Plant Science, 2014, 5, 35.	3.6	125

3

#	Article	IF	CITATIONS
19	n <scp>MAT</scp> 4, a maturase factor required for <i>nad1</i> preâ€m <scp>RNA</scp> processing and maturation, is essential for holocomplexÂ <scp>I</scp> biogenesis in <scp>A</scp> rabidopsis mitochondria. Plant Journal, 2014, 78, 253-268.	5.7	110
20	Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea. Mitochondrion, 2014, 19, 135-143.	3.4	81
21	m <scp>CSF</scp> 1, a nucleusâ€encoded <scp>CRM</scp> protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes <scp>I</scp> and <scp>IV</scp> in <scp>A</scp> rabidopsis. New Phytologist, 2013, 199, 379-394.	7.3	98
22	Expression of Mitochondrial Gene Fragments within the Tapetum Induce Male Sterility by Limiting the Biogenesis of the Respiratory Machinery in Transgenic Tobacco ^F . Journal of Integrative Plant Biology, 2012, 54, 115-130.	8.5	24
23	A PORR domain protein required for <i>rpl2</i> and <i>ccmF</i> _{<i>C</i>} intron splicing and for the biogenesis of <i>c</i> â€type cytochromes in Arabidopsis mitochondria. Plant Journal, 2012, 69, 996-1005.	5.7	99
24	nMAT1, a nuclearâ€encoded maturase involved in the <i>trans</i> â€splicing of <i>nad1</i> intron 1, is essential for mitochondrial complex I assembly and function. Plant Journal, 2012, 71, 413-426.	5.7	133
25	AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in <i>Arabidopsis</i> mitochondria. Rna, 2009, 15, 2299-2311.	3.5	142
26	Photosynthetic activity during olive (<i>Olea europaea</i>) leaf development correlates with plastid biogenesis and Rubisco levels. Physiologia Plantarum, 2008, 134, 547-558.	5.2	49
27	Characterization of the Molecular Basis of Group II Intron RNA Recognition by CRS1-CRM Domains. Journal of Biological Chemistry, 2008, 283, 23333-23342.	3.4	34

28 RNA METABOLISM AND TRANSCRIPT REGULATION. , 0, , 143-183.