
Hani A Awad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233002/publications.pdf

Version: 2024-02-01

		38742	30087
152	11,498	50	103
papers	citations	h-index	g-index

#	Article	IF	CITATIONS
1	Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 2004, 25, 3211-3222.	11.4	728
2	3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 2014, 35, 4026-4034.	11.4	710
3	Chondrogenic Potential of Adipose Tissue-Derived Stromal Cells in Vitro and in Vivo. Biochemical and Biophysical Research Communications, 2002, 290, 763-769.	2.1	626
4	Autologous Mesenchymal Stem Cell-Mediated Repair of Tendon. Tissue Engineering, 1999, 5, 267-277.	4.6	496
5	Clonal analysis of the differentiation potential of human adiposeâ€derived adult stem cells. Journal of Cellular Physiology, 2006, 206, 229-237.	4.1	434
6	Repair of patellar tendon injuries using a cell–collagen composite. Journal of Orthopaedic Research, 2003, 21, 420-431.	2.3	355
7	Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 2008, 26, 1-9.	2.3	333
8	Evolving concepts in bone infection: redefining "biofilmâ€, "acute vs. chronic osteomyelitisâ€, "the immune proteomeâ€and "local antibiotic therapyâ€. Bone Research, 2019, 7, 20.	11.4	300
9	Periosteal Progenitor Cell Fate in Segmental Cortical Bone Graft Transplantations: Implications for Functional Tissue Engineering. Journal of Bone and Mineral Research, 2005, 20, 2124-2137.	2.8	294
10	3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Annals of Biomedical Engineering, 2017, 45, 23-44.	2.5	271
11	Chondrogenic Differentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Cartilage Extracellular Matrix. Tissue Engineering - Part A, 2009, 15, 231-241.	3.1	259
12	Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials, 2016, 81, 58-71.	11.4	248
13	Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. Journal of Cellular Physiology, 2005, 204, 184-191.	4.1	200
14	A Perspective: Engineering Periosteum for Structural Bone Graft Healing. Clinical Orthopaedics and Related Research, 2008, 466, 1777-1787.	1.5	194
15	In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: Effects of initial seeding density on contraction kinetics. , 2000, 51, 233-240.		193
16	Evidence of <i>Staphylococcus Aureus</i> Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis. Journal of Bone and Mineral Research, 2017, 32, 985-990.	2.8	193
17	Effects of Transforming Growth Factor $\langle i \rangle \hat{l}^2 \langle j \rangle 1$ and Dexamethasone on the Growth and Chondrogenic Differentiation of Adipose-Derived Stromal Cells. Tissue Engineering, 2003, 9, 1301-1312.	4.6	187
18	Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight, 2018, 3, .	5.0	166

#	Article	IF	CITATIONS
19	Reduced COX-2 Expression in Aged Mice Is Associated With Impaired Fracture Healing. Journal of Bone and Mineral Research, 2009, 24, 251-264.	2.8	145
20	Teriparatide as a Chondroregenerative Therapy for Injury-Induced Osteoarthritis. Science Translational Medicine, 2011, 3, 101ra93.	12.4	145
21	Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology, 2004, 41, 389-99.	0.4	143
22	Quantitative mouse model of implantâ€associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. Journal of Orthopaedic Research, 2008, 26, 96-105.	2.3	131
23	Molecular diffusion in tissue-engineered cartilage constructs: Effects of scaffold material, time, and culture conditions. Journal of Biomedical Materials Research Part B, 2004, 70B, 397-406.	3.1	130
24	Inhibition of \hat{l}^2 -catenin signaling causes defects in postnatal cartilage development. Journal of Cell Science, 2008, 121, 1455-1465.	2.0	129
25	Ubiquitin Ligase Smurf1 Mediates Tumor Necrosis Factor-induced Systemic Bone Loss by Promoting Proteasomal Degradation of Bone Morphogenetic Signaling Proteins. Journal of Biological Chemistry, 2008, 283, 23084-23092.	3.4	121
26	Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 2011, 29, 1601-1610.	3.2	120
27	A potential mechanism for ageâ€related declines in patellar tendon biomechanics. Journal of Orthopaedic Research, 2002, 20, 1315-1322.	2.3	118
28	Induction of an osteoarthritisâ€like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis and Rheumatism, 2008, 58, 3132-3144.	6.7	112
29	Neonatal Hyperoxia Causes Pulmonary Vascular Disease and Shortens Life Span in Aging Mice. American Journal of Pathology, 2011, 178, 2601-2610.	3.8	106
30	In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Science Translational Medicine, 2017, 9, .	12.4	105
31	Structural Bone Allograft Combined with Genetically Engineered Mesenchymal Stem Cells as a Novel Platform for Bone Tissue Engineering. Tissue Engineering, 2007, 13, 435-445.	4.6	103
32	Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. Journal of Orthopaedic Research, 2011, 29, 684-693.	2.3	103
33	Axin2 controls bone remodeling through the β-catenin–BMP signaling pathway in adult mice. Journal of Cell Science, 2009, 122, 3566-3578.	2.0	101
34	NOTCH signaling in skeletal progenitors is critical for fracture repair. Journal of Clinical Investigation, 2016, 126, 1471-1481.	8.2	96
35	Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. Journal of Orthopaedic Research, 2009, 27, 833-840.	2.3	94
36	Perspectives on Cell and Collagen Composites for Tendon Repair. Clinical Orthopaedics and Related Research, 1999, 367, S324-S332.	1.5	93

#	Article	IF	Citations
37	Biological Effects of rAAV-caAlk2 Coating on Structural Allograft healing. Molecular Therapy, 2005, 12, 212-218.	8.2	93
38	Cellular and Molecular Factors in Flexor Tendon Repair and Adhesions: A Histological and Gene Expression Analysis. Connective Tissue Research, 2013, 54, 218-226.	2.3	91
39	The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials, 2014, 35, 2752-2759.	11.4	89
40	Delayed Fracture Healing and Increased Callus Adiposity in a C57BL/6J Murine Model of Obesity-Associated Type 2 Diabetes Mellitus. PLoS ONE, 2014, 9, e99656.	2.5	88
41	Adhesions in a murine flexor tendon graft model: Autograft versus allograft reconstruction. Journal of Orthopaedic Research, 2008, 26, 824-833.	2.3	83
42	Freeze-dried Tendon Allografts as Tissue-engineering Scaffolds for Gdf5 Gene Delivery. Molecular Therapy, 2008, 16, 466-473.	8.2	82
43	Role of Matrix Extracellular Phosphoglycoprotein in the Pathogenesis of X-Linked Hypophosphatemia. Journal of the American Society of Nephrology: JASN, 2005, 16, 1645-1653.	6.1	81
44	Longitudinal assessment of synovial, lymph node, and bone volumes in inflammatory arthritis in mice by in vivo magnetic resonance imaging and microfocal computed tomography. Arthritis and Rheumatism, 2007, 56, 4024-4037.	6.7	79
45	Gene Expression Analysis of the Pleiotropic Effects of TGF-β1 in an In Vitro Model of Flexor Tendon Healing. PLoS ONE, 2012, 7, e51411.	2.5	78
46	Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment. Bone, 2014, 62, 79-89.	2.9	72
47	Selective Runx2-II deficiency leads to low-turnover osteopenia in adult mice. Developmental Biology, 2005, 283, 345-356.	2.0	71
48	Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Engineering - Part B: Reviews, 2010, 16, 13-20.	4.8	56
49	Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. Journal of Biomechanics, 2007, 40, 3178-3186.	2.1	55
50	Teriparatide therapy enhances devitalized femoral allograft osseointegration and biomechanics in a murine model. Bone, 2011, 48, 562-570.	2.9	55
51	Self-complementary AAV2.5-BMP2-coated Femoral Allografts Mediated Superior Bone Healing Versus Live Autografts in Mice With Equivalent Biomechanics to Unfractured Femur. Molecular Therapy, 2011, 19, 1416-1425.	8.2	55
52	Deletion of NFKB1 enhances canonical NF-κB signaling and increases macrophage and myofibroblast content during tendon healing. Scientific Reports, 2019, 9, 10926.	3.3	55
53	A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone, 2015, 72, 128-136.	2.9	53
54	Tendon Repair Is Compromised in a High Fat Diet-Induced Mouse Model of Obesity and Type 2 Diabetes. PLoS ONE, 2014, 9, e91234.	2.5	50

#	Article	IF	CITATIONS
55	PTH-enhanced structural allograft healing is associated with decreased angiopoietin-2–mediated arteriogenesis, mast cell accumulation, and fibrosis. Journal of Bone and Mineral Research, 2013, 28, 586-597.	2.8	49
56	Endogenous tissue engineering: PTH therapy for skeletal repair. Cell and Tissue Research, 2012, 347, 545-552.	2.9	48
57	Addition of a Suture Anchor for Coracoclavicular Fixation to a Superior Locking Plate Improves Stability of Type IIB Distal Clavicle Fractures. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, 998-1004.	2.7	48
58	Differential effects of biologic versus bisphosphonate inhibition of wear debrisâ€induced osteolysis assessed by longitudinal micro T. Journal of Orthopaedic Research, 2008, 26, 1340-1346.	2.3	47
59	The Impact of Smad3 Loss of Function on TGF- \hat{l}^2 Signaling and Radiation-Induced Capsular Contracture. Plastic and Reconstructive Surgery, 2011, 127, 2263-2269.	1.4	47
60	Recent Advances in Gene Delivery for Structural Bone Allografts. Tissue Engineering, 2007, 13, 1973-1985.	4.6	46
61	Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrastâ€enhanced magnetic resonance imaging. Arthritis and Rheumatism, 2008, 58, 2019-2029.	6.7	45
62	Establishment of an index with increased sensitivity for assessing murine arthritis. Journal of Orthopaedic Research, 2011, 29, 1145-1151.	2.3	45
63	Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur. Bone, 2013, 57, 174-183.	2.9	45
64	NF- $\hat{\mathbb{I}}^{\mathrm{o}}$ B activation persists into the remodeling phase of tendon healing and promotes myofibroblast survival. Science Signaling, 2020, 13, .	3.6	42
65	Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. Journal of Biomechanics, 2013, 46, 723-730.	2.1	41
66	Evaluation of dense polylactic acid/betaâ€tricalcium phosphate scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 95A, 717-726.	4.0	40
67	Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels. Biomechanics and Modeling in Mechanobiology, 2012, 11 , $689-702$.	2.8	40
68	Mechanisms of bone fragility in a mouse model of glucocorticoidâ€treated rheumatoid arthritis: Implications for insufficiency fracture risk. Arthritis and Rheumatism, 2012, 64, 3649-3659.	6.7	39
69	Development of antisense oligonucleotide (ASO) technology against Tgfâ $\hat{\bf t}^2$ signaling to prevent scarring during flexor tendon repair. Journal of Orthopaedic Research, 2015, 33, 859-866.	2.3	39
70	Alteration of femoral bone morphology and density in COX-2â^'/â^' mice. Bone, 2006, 39, 767-772.	2.9	38
71	μCT-Based Measurement of Cortical Bone Graft-to-Host Union. Journal of Bone and Mineral Research, 2009, 24, 899-907.	2.8	38
72	Bone Marrow-Derived Matrix Metalloproteinase-9 Is Associated with Fibrous Adhesion Formation after Murine Flexor Tendon Injury. PLoS ONE, 2012, 7, e40602.	2.5	37

#	Article	IF	CITATIONS
73	Serpine1 Knockdown Enhances MMP Activity after Flexor Tendon Injury in Mice: Implications for Adhesions Therapy. Scientific Reports, 2018, 8, 5810.	3.3	36
74	Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP. Spine Journal, 2008, 8, 717-722.	1.3	35
75	Hydroxyapatite Thin Films with Giant Electrical Polarization. Chemistry of Materials, 2015, 27, 1164-1171.	6.7	35
76	Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis. Journal of Biomedical Optics, 2011, 16, 087012.	2.6	34
77	A Novel Animal Model for Studying Silicone Gel–Related Capsular Contracture. Plastic and Reconstructive Surgery, 2010, 126, 1483-1491.	1.4	33
78	EP1 \hat{a} '/ \hat{a} ' mice have enhanced osteoblast differentiation and accelerated fracture repair. Journal of Bone and Mineral Research, 2011, 26, 792-802.	2.8	33
79	Delayed short-course treatment with teriparatide (PTH1–34) improves femoral allograft healing by enhancing intramembranous bone formation at the graft–host junction. Journal of Bone and Mineral Research, 2012, 27, 26-37.	2.8	33
80	Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Journal of Biomedical Materials Research - Part A, 2018, 106, 663-672.	4.0	32
81	Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathogens, 2020, 16, e1008988.	4.7	32
82	Effects of antiresorptive agents on osteomyelitis. Annals of the New York Academy of Sciences, 2010, 1192, 84-94.	3.8	31
83	A High-Throughput Screening Approach To Repurpose FDA-Approved Drugs for Bactericidal Applications against Staphylococcus aureus Small-Colony Variants. MSphere, 2018, 3, .	2.9	31
84	The Effects of ZD6474, an Inhibitor of VEGF Signaling, on Cutaneous Wound Healing in Mice1. Journal of Surgical Research, 2005, 129, 251-259.	1.6	30
85	Teriparatide Therapy and Beta-Tricalcium Phosphate Enhance Scaffold Reconstruction of Mouse Femoral Defects. Tissue Engineering - Part A, 2011, 17, 389-398.	3.1	30
86	Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones. Journal of Biomedical Optics, 2013, 18, 077001.	2.6	30
87	Spatially offset Raman spectroscopy for in vivo bone strength prediction. Biomedical Optics Express, 2018, 9, 4781.	2.9	30
88	Comparison of an All-Inside Suture Technique With Traditional Pull-Out Suture and Suture Anchor Repair Techniques for Flexor Digitorum Profundus Attachment to Bone. Journal of Hand Surgery, 2013, 38, 1084-1090.	1.6	29
89	Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. Journal of Biophotonics, 2017, 10, 990-996.	2.3	28
90	An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacuno-canalicular network during chronic osteomyelitis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102039.	3.3	28

#	Article	IF	CITATIONS
91	TGFâ€Î²1 Suppresses Plasmin and MMP Activity in Flexor Tendon Cells via PAIâ€1: Implications for Scarless Flexor Tendon Repair. Journal of Cellular Physiology, 2015, 230, 318-326.	4.1	27
92	Calcium Phosphate Spacers for the Local Delivery of Sitafloxacin and Rifampin to Treat Orthopedic Infections: Efficacy and Proof of Concept in a Mouse Model of Single-Stage Revision of Device-Associated Osteomyelitis. Pharmaceutics, 2019, 11, 94.	4.5	27
93	A brief history of tendon and ligament bioreactors: Impact and future prospects. Journal of Orthopaedic Research, 2020, 38, 2318-2330.	2.3	25
94	Engineering superficial zone features in tissue engineered cartilage. Biotechnology and Bioengineering, 2013, 110, 1476-1486.	3.3	24
95	Systemic EP4 Inhibition Increases Adhesion Formation in a Murine Model of Flexor Tendon Repair. PLoS ONE, 2015, 10, e0136351.	2.5	22
96	Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone, 2015, 73, 77-89.	2.9	21
97	Parathyroid hormone 1–34 enhances extracellular matrix deposition and organization during flexor tendon repair. Journal of Orthopaedic Research, 2015, 33, 17-24.	2.3	21
98	Lactate Dehydrogenase Inhibition With Oxamate Exerts Bone Anabolic Effect. Journal of Bone and Mineral Research, 2020, 35, 2432-2443.	2.8	21
99	Screw Pull-out Force is Dependent on Screw Orientation in an Anterior Cervical Plate Construct. Journal of Spinal Disorders and Techniques, 2007, 20, 369-373.	1.9	20
100	Sclerostin activity plays a key role in the negative effect of glucocorticoid signaling on osteoblast function in mice. Bone Research, 2017, 5, 17013.	11.4	20
101	Diblock Copolymer Hydrophobicity Facilitates Efficient Gene Silencing and Cytocompatible Nanoparticle-Mediated siRNA Delivery to Musculoskeletal Cell Types. Biomacromolecules, 2017, 18, 3753-3765.	5.4	20
102	Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia. Bone, 2014, 60, 148-161.	2.9	19
103	Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis. Frontiers in Microbiology, 2021, 12, 723498.	3.5	19
104	Inhibition of the mitochondrial permeability transition improves bone fracture repair. Bone, 2020, 137, 115391.	2.9	16
105	The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings. Biomaterials, 2008, 29, 3882-3887.	11.4	15
106	Loss of the PGE2 receptor EP1 enhances bone acquisition, which protects against age and ovariectomy-induced impairments in bone strength. Bone, 2015, 72, 92-100.	2.9	15
107	Transcriptomic Analysis of Cellular Pathways in Healing Flexor Tendons of Plasminogen Activator Inhibitor 1 (PAlâ€1/Serpine1) Null Mice. Journal of Orthopaedic Research, 2020, 38, 43-58.	2.3	15
108	Bone Tissue Engineering., 2014, , 1733-1743.		14

#	Article	IF	Citations
109	Teriparatide (human PTH1–34) compensates for impaired fracture healing in COX-2 deficient mice. Bone, 2018, 110, 150-159.	2.9	14
110	Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions. Journal of Tissue Engineering, 2014, 5, 204173141452873.	5.5	13
111	Chronic axial compression of the mouse tail segment induces MRI bone marrow edema changes that correlate with increased marrow vasculature and cellularity. Journal of Orthopaedic Research, 2010, 28, 1220-1228.	2.3	12
112	What Regions of the Distal Clavicle Have the Greatest Bone Mineral Density and Cortical Thickness? A Cadaveric Study. Clinical Orthopaedics and Related Research, 2019, 477, 2726-2732.	1.5	11
113	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies. Journal of Bone and Mineral Research, 2020, 35, 3-17.	2.8	11
114	Peritalar Kinematics With Combined Deltoid-Spring Ligament Reconstruction in Simulated Advanced Adult Acquired Flatfoot Deformity. Foot and Ankle International, 2020, 41, 1149-1157.	2.3	11
115	Functional Tissue Engineering: Assessment of Function in Tendon and Ligament Repair., 2003,, 213-226.		10
116	A Biomechanical, Cadaveric Evaluation of Single- Versus Double-Row Repair Techniques on Stability of Bony Bankart Lesions. American Journal of Sports Medicine, 2021, 49, 773-779.	4.2	10
117	Improved prediction of femoral fracture toughness in mice by combining standard medical imaging with Raman spectroscopy. Journal of Biomechanics, 2021, 116, 110243.	2.1	10
118	A high-throughput semi-automated bone segmentation workflow for murine hindpaw micro-CT datasets. Bone Reports, 2022, 16, 101167.	0.4	10
119	Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation. ELife, 0, 11 , .	6.0	9
120	Structural and biomechanical responses of osseous healing: a novel murine nonunion model. Journal of Orthopaedics and Traumatology, 2013, 14, 247-257.	2.3	8
121	Effects of tamoxifen on tendon homeostasis and healing: Considerations for the use of tamoxifenâ€inducible mouse models. Journal of Orthopaedic Research, 2021, 39, 1572-1580.	2.3	7
122	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies – Secondary Publication. Journal of Orthopaedic Research, 2020, 38, 485-502.	2.3	7
123	Altered TGFB1 regulated pathways promote accelerated tendon healing in the superhealer MRL/MpJ mouse. Scientific Reports, 2022, 12, 3026.	3.3	7
124	The Effect of Pulley Reconstruction on Maximum Flexion, Bowstringing, and Gliding Coefficient in the Setting of Zone II Repair of FDS and FDP: A Cadaveric Investigation. Hand, 2014, 9, 99-104.	1.2	6
125	Reconstruction of the Superior Glenoid Labrum WithÂBiceps Tendon Autograft: A Cadaveric Biomechanical Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2019, 35, 353-358.	2.7	6
126	High dose teriparatide (rPTH1-34) therapy increases callus volume and enhances radiographic healing at 8-weeks in a massive canine femoral allograft model. PLoS ONE, 2017, 12, e0185446.	2.5	6

#	Article	IF	CITATIONS
127	TNF is required for the induction but not the maintenance of compressionâ€induced BME signals in murine tail vertebrae: Limitations of antiâ€TNF therapy for degenerative disc disease. Journal of Orthopaedic Research, 2011, 29, 1367-1374.	2.3	5
128	Patient-Specific 3-Dimensional Modeling and Its Use for Preoperative Counseling of Patients Undergoing Hip Arthroscopy. Orthopaedic Journal of Sports Medicine, 2018, 6, 232596711879464.	1.7	5
129	Chondral Damage After Arthroscopic Repair Techniques for Acute Bony Bankart Lesions: A Biomechanical Study. American Journal of Sports Medicine, 2021, 49, 2743-2750.	4.2	5
130	A Mouse Model of Flexor Tendon Repair. Methods in Molecular Biology, 2014, 1130, 73-88.	0.9	5
131	The Effect of the Epitendinous Suture on Gliding in a Cadaveric Model of Zone II Flexor TendonÂRepair. Journal of Hand Surgery, 2015, 40, 1363-1368.	1.6	4
132	Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair. Annals of Biomedical Engineering, 2020, 48, 927-939.	2.5	4
133	Teriparatide (recombinant parathyroid hormone 1–34) enhances bone allograft integration in a clinically relevant pig model of segmental mandibulectomy. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1037-1049.	2.7	4
134	Determination of best Raman spectroscopy spatial offsets for transcutaneous bone quality assessments in human hands. Biomedical Optics Express, 2021, 12, 7517.	2.9	4
135	Principles of engineering tissue regeneration (Sun Valley 2012). IBMS BoneKEy, 2013, 10, .	0.0	3
136	Flexor Digitorum Superficialis Repair Outside theÂA2 Pulley After Zone II Laceration: GlidingÂand Bowstringing. Journal of Hand Surgery, 2015, 40, 653-659.	1.6	3
137	Prospects of Tendon Tissue Engineering in Sports Medicine. Deutsche Zeitschrift Fur Sportmedizin, 2012, 2012, 132-135.	0.5	3
138	Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy. Proceedings of SPIE, 2012, , .	0.8	2
139	Structural Bone Allograft Combined with Genetically Engineered Mesenchymal Stem Cells As a Novel Platform for Bone Tissue Engineering. Tissue Engineering, 2006, .	4.6	2
140	A Mouse Femoral Ostectomy Model to Assess Bone Graft Substitutes. Methods in Molecular Biology, 2021, 2230, 75-89.	0.9	2
141	Steroid-induced osteoporosis monitored by Raman spectroscopy. Proceedings of SPIE, 2011, , .	0.8	1
142	Assessment of Cellular Responses of Tissue Constructs inÂvitro in Regenerative Engineering. , 2019, , 414-426.		1
143	Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Engineering - Part A, O, , 110306231138043.	3.1	1
144	The Effects of Splitting an Above Elbow Cast: A biomechanical study. Injury, 2020, 51, 1759-1762.	1.7	1

#	Article	IF	CITATIONS
145	Notice of Removal: Ultrasound-mediated transfection of endogenous stem cells for regenerative medicine. , 2017 , , .		0
146	Bone tissue engineering. , 2020, , 1511-1519.		0
147	In Vivo Parathyroid Hormone Treatment Expands All Multipotent Primitive Hematopoietic Cell Subsets Blood, 2009, 114, 1449-1449.	1.4	O
148	Dwjm-Adherence Induces Chemotherapy Resistance in Primary Acute Myeloid Leukemia By Altering Leukemia Cell Metabolism. Blood, 2018, 132, 3953-3953.	1.4	0
149	Characterizing Naked Nuclei Frequency and Movement in Primary AML Cell Culture Using an ECM-Based Model. Blood, 2021, 138, 2365-2365.	1.4	0
150	Cantilever Bending of Murine Femoral Necks. Journal of Visualized Experiments, 2022, , .	0.3	0
151	Determination of best Raman spectroscopy spatial offsets for transcutaneous bone quality assessments in human hands. , 2022, , .		0
152	Determination of spatially offset Raman spectroscopy geometry suitable for human hand bone quality assessment., 2021,,.		0