
He Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230928/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnology Advances, 2015, 33, 1522-1546.	11.7	188
2	CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Applied Microbiology and Biotechnology, 2017, 101, 7435-7443.	3.6	126
3	Fungal arachidonic acid-rich oil: research, development and industrialization. Critical Reviews in Biotechnology, 2014, 34, 197-214.	9.0	85
4	Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. Bioresource Technology, 2019, 281, 449-456.	9.6	80
5	lonic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydrate Polymers, 2020, 234, 115914.	10.2	79
6	Microbial production of plant hormones: Opportunities and challenges. Bioengineered, 2017, 8, 124-128.	3.2	77
7	CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus <i>Fusarium fujikuroi</i> and Its Application in Strain Engineering for Gibberellic Acid Production. ACS Synthetic Biology, 2019, 8, 445-454.	3.8	70
8	Enhancing Catalytic Performance of Porcine Pancreatic Lipase by Covalent Modification Using Functional Ionic Liquids. ACS Catalysis, 2013, 3, 1976-1983.	11.2	69
9	Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chemistry, 2015, 17, 250-259.	9.0	69
10	Photodynamic Chitosan Nano-Assembly as a Potent Alternative Candidate for Combating Antibiotic-Resistant Bacteria. ACS Applied Materials & Interfaces, 2019, 11, 26711-26721.	8.0	67
11	Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Materials Science and Engineering C, 2019, 96, 356-364.	7.3	61
12	Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. International Journal of Biological Macromolecules, 2018, 119, 624-632.	7.5	56
13	SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS ONE, 2016, 11, e0162318.	2.5	55
14	Graphene Oxide Nanosheets Shielding of Lipase Immobilized on Magnetic Composites for the Improvement of Enzyme Stability. ACS Sustainable Chemistry and Engineering, 2019, 7, 4486-4494.	6.7	51
15	Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway. Biochemical Engineering Journal, 2017, 119, 52-58.	3.6	49
16	Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Applied Microbiology and Biotechnology, 2018, 102, 9541-9548.	3.6	43
17	Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level. PLoS ONE, 2016, 11, e0167245.	2.5	42
18	Engineering Microbes to Produce Polyunsaturated Fatty Acids. Trends in Biotechnology, 2019, 37, 344-346.	9.3	40

He Huang

#	Article	IF	CITATIONS
19	The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express, 2019, 9, 138.	3.0	39
20	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	3.6	37
21	Programming Integrative Extracellular and Intracellular Biocatalysis for Rapid, Robust, and Recyclable Synthesis of Trehalose. ACS Catalysis, 2018, 8, 1837-1842.	11.2	35
22	Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in <i>Clostridium tyrobutyricum</i> . Biotechnology and Bioengineering, 2012, 109, 708-718.	3.3	33
23	Identification and Characterization of a Novel Trehalose Synthase Gene Derived from Saline-Alkali Soil Metagenomes. PLoS ONE, 2013, 8, e77437.	2.5	33
24	Programming a Biofilm-Mediated Multienzyme-Assembly-Cascade System for the Biocatalytic Production of Glucosamine from Chitin. Journal of Agricultural and Food Chemistry, 2018, 66, 8061-8068.	5.2	33
25	Improved Production of Arachidonic Acid by Combined Pathway Engineering and Synthetic Enzyme Fusion in <i>Yarrowia lipolytica</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9851-9857.	5.2	33
26	Mechanism of Arachidonic Acid Accumulation during Aging in <i>Mortierella alpina</i> : A Large-Scale Label-Free Comparative Proteomics Study. Journal of Agricultural and Food Chemistry, 2016, 64, 9124-9134.	5.2	29
27	Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups. Colloids and Surfaces B: Biointerfaces, 2017, 160, 416-422.	5.0	29
28	Genome Sequence of Clostridium tyrobutyricum ATCC 25755, a Butyric Acid-Overproducing Strain. Genome Announcements, 2013, 1, .	0.8	27
29	Enhanced catalytic performance of lipase covalently bonded on ionic liquids modified magnetic alginate composites. Journal of Colloid and Interface Science, 2019, 553, 494-502.	9.4	26
30	Lipid Fraction and Intracellular Metabolite Analysis Reveal the Mechanism of Arachidonic Acid-Rich Oil Accumulation in the Aging Process of <i>Mortierella alpina</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 9812-9819.	5.2	24
31	Integrated Biocatalytic Process for Trehalose Production and Separation from Maltose. Industrial & Engineering Chemistry Research, 2016, 55, 10566-10575.	3.7	23
32	A Yarrowia lipolytica strain engineered for arachidonic acid production counteracts metabolic burden by redirecting carbon flux towards intracellular fatty acid accumulation at the expense of organic acids secretion. Biochemical Engineering Journal, 2017, 128, 201-209.	3.6	22
33	Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnology Advances, 2022, 59, 107984.	11.7	22
34	Dispersible MoS ₂ Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomaterials Science and Engineering, 2017, 3, 3261-3272.	5.2	19
35	Insights from the complete genome sequence of <i>Clostridium tyrobutyricum</i> provide a platform for biotechnological and industrial applications. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1245-1260.	3.0	16
36	Dispersible MoS ₂ micro-sheets induced a proinflammatory response and apoptosis in the gills and liver of adult zebrafish. RSC Advances, 2018, 8, 17826-17836.	3.6	16

He Huang

#	Article	IF	CITATIONS
37	Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria. Journal of Agricultural and Food Chemistry, 2017, 65, 6674-6681.	5.2	15
38	Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering. Applied Microbiology and Biotechnology, 2019, 103, 4313-4324.	3.6	15
39	Tailoring the Oxidative Stress Tolerance of <i>Clostridium tyrobutyricum</i> CCTCC W428 by Introducing Trehalose Biosynthetic Capability. Journal of Agricultural and Food Chemistry, 2017, 65, 8892-8901.	5.2	14
40	Pretreatment with Î ³ -Valerolactone/[Mmim]DMP and Enzymatic Hydrolysis on Corncob and Its Application in Immobilized Butyric Acid Fermentation. Journal of Agricultural and Food Chemistry, 2018, 66, 11709-11717.	5.2	14
41	YALIcloneNHEJ: An Efficient Modular Cloning Toolkit for NHEJ Integration of Multigene Pathway and Terpenoid Production in Yarrowia lipolytica. Frontiers in Bioengineering and Biotechnology, 2021, 9, 816980.	4.1	12
42	In-Situ Biocatalytic Production of Trehalose with Autoinduction Expression of Trehalose Synthase. Journal of Agricultural and Food Chemistry, 2018, 66, 1444-1451.	5.2	10
43	Fe3O4@chitosan Microspheres Coating as Cytoprotective Exoskeletons for the Enhanced Production of Butyric Acid With Clostridium tyrobutyricum Under Acid Stress. Frontiers in Bioengineering and Biotechnology, 2020, 8, 449.	4.1	10
44	Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation. PLoS ONE, 2016, 11, e0152275.	2.5	8
45	Development of a Defined Medium for Arachidonic Acid Production by Mortierella alpina Using a Visualization Method. Applied Biochemistry and Biotechnology, 2012, 168, 1516-1527.	2.9	7
46	Optimization of bioconversion process for trehalose production from enzymatic hydrolysis of kudzu root starch using a visualization method. Bioresources and Bioprocessing, 2015, 2, .	4.2	6
47	Catcher/Tag cyclization introduces electrostatic interaction mediated protein-protein interactions to enhance the thermostability of luciferase. Process Biochemistry, 2019, 80, 64-71.	3.7	6