List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes. Diabetes, 2014, 63, 2538-2550.	0.6	261
2	Stratification of Type 1 Diabetes Risk on the Basis of Islet Autoantibody Characteristics. Diabetes, 2004, 53, 384-392.	0.6	243
3	Natural History of Type 1 Diabetes. Diabetes, 2005, 54, S25-S31.	0.6	223
4	Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia, 2012, 55, 1937-1943.	6.3	209
5	Effects of High-Dose Oral Insulin on Immune Responses in Children at High Risk for Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2015, 313, 1541.	7.4	174
6	Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. Journal of Clinical Investigation, 2004, 114, 589-597.	8.2	173
7	Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia, 2009, 52, 1881-1888.	6.3	166
8	Compromised Gut Microbiota Networks in Children With Anti-Islet Cell Autoimmunity. Diabetes, 2014, 63, 2006-2014.	0.6	154
9	Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA - Journal of the American Medical Association, 2020, 323, 339.	7.4	139
10	Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. Journal of Clinical Investigation, 2004, 114, 589-597.	8.2	120
11	Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome, 2016, 4, 17.	11.1	100
12	Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice. Nature Communications, 2016, 7, 10991.	12.8	99
13	Age- and Islet Autoimmunity–Associated Differences in Amino Acid and Lipid Metabolites in Children at Risk for Type 1 Diabetes. Diabetes, 2011, 60, 2740-2747.	0.6	96
14	Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. BMJ Open, 2016, 6, e011144.	1.9	89
15	A Public Health Antibody Screening Indicates a 6-Fold Higher SARS-CoV-2 Exposure Rate than Reported Cases in Children. Med, 2021, 2, 149-163.e4.	4.4	85
16	GAD Autoantibody Affinity and Epitope Specificity Identify Distinct Immunization Profiles in Children at Risk for Type 1 Diabetes. Diabetes, 2007, 56, 1527-1533.	0.6	81
17	Modulating the natural history of type 1 diabetes in children at high genetic risk by mucosal insulin immunization. Current Diabetes Reports, 2008, 8, 87-93.	4.2	71
18	Islet autoantibody phenotypes and incidence in children at increased risk for type 1 diabetes. Diabetologia, 2015, 58, 2317-2323.	6.3	71

#	Article	IF	CITATIONS
19	Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children. Journal of Autoimmunity, 2011, 37, 3-7.	6.5	65
20	A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes and Immunity, 2012, 13, 549-555.	4.1	63
21	Islet Autoantibody Standardization Program 2018 Workshop: Interlaboratory Comparison of Glutamic Acid Decarboxylase Autoantibody Assay Performance. Clinical Chemistry, 2019, 65, 1141-1152.	3.2	62
22	Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open, 2019, 9, e028578.	1.9	62
23	Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia, 2018, 61, 2252-2258.	6.3	51
24	Combined testing of antibody titer and affinity improves insulin autoantibody measurement: Diabetes Antibody Standardization Program. Clinical Immunology, 2007, 122, 85-90.	3.2	50
25	A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Science Translational Medicine, 2018, 10, .	12.4	49
26	Predicting type 1 diabetes. Current Diabetes Reports, 2005, 5, 98-103.	4.2	48
27	Autoantibodies to IA-2β improve diabetes risk assessment in high-risk relatives. Diabetologia, 2008, 51, 488-492.	6.3	47
28	In insulin-autoantibody-positive children from the general population, antibody affinity identifies those at high and low risk. Diabetologia, 2005, 48, 1830-1832.	6.3	44
29	Detection of Antibodies Directed to the N-Terminal Region of GAD Is Dependent on Assay Format and Contributes to Differences in the Specificity of GAD Autoantibody Assays for Type 1 Diabetes. Diabetes, 2015, 64, 3239-3246.	0.6	44
30	Type 1 diabetes risk assessment: improvement by follow-up measurements in young islet autoantibody-positive relatives. Diabetologia, 2006, 49, 2969-2976.	6.3	42
31	Autoantibodies to N-terminally truncated GAD improve clinical phenotyping of individuals with adult-onset diabetes: Action LADA 12. Diabetologia, 2018, 61, 1644-1649.	6.3	42
32	Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases. Diabetologia, 2012, 55, 1978-1984.	6.3	39
33	GAD Autoantibody Affinity in Adult Patients With Latent Autoimmune Diabetes, the Study Participants of a GAD65 Vaccination Trial. Diabetes Care, 2014, 37, 1675-1680.	8.6	39
34	A novel approach for the analysis of longitudinal profiles reveals delayed progression to type 1 diabetes in a subgroup of multiple-islet-autoantibody-positive children. Diabetologia, 2016, 59, 2172-2180.	6.3	38
35	A novel LIPS assay for insulin autoantibodies. Acta Diabetologica, 2018, 55, 263-270.	2.5	36
36	A hormone complex of FABP4 and nucleoside kinases regulates islet function. Nature, 2021, 600, 720-726.	27.8	36

#	Article	IF	CITATIONS
37	Birth and coming of age of islet autoantibodies. Clinical and Experimental Immunology, 2019, 198, 294-305.	2.6	35
38	Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnology Advances, 2020, 39, 107359.	11.7	34
39	Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study. Diabetologia, 2018, 61, 1484-1490.	6.3	32
40	Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial. Diabetologia, 2021, 64, 1079-1092.	6.3	31
41	Prospective evaluation of risk factors for the development of islet autoimmunity and type 1 diabetes during puberty - TEENDIAB: study design. Pediatric Diabetes, 2012, 13, 419-424.	2.9	30
42	Progression from single to multiple islet autoantibodies often occurs soon after seroconversion: implications for early screening. Diabetologia, 2015, 58, 411-413.	6.3	29
43	Antibodies to the Tyrosine Phosphatase-like Protein IA-2 are highly associated with IDDM, but not with Autoimmune Endocrine Diseases or Stiff Man Syndrome. Autoimmunity, 1997, 25, 203-211.	2.6	28
44	Time-Resolved Autoantibody Profiling Facilitates Stratification of Preclinical Type 1 Diabetes in Children. Diabetes, 2019, 68, 119-130.	0.6	28
45	Reactivity to N-Terminally Truncated GAD65(96–585) Identifies GAD Autoantibodies That Are More Closely Associated With Diabetes Progression in Relatives of Patients With Type 1 Diabetes. Diabetes, 2015, 64, 3247-3252.	0.6	27
46	3 Screen ELISA for High-Throughput Detection of Beta Cell Autoantibodies in Capillary Blood. Diabetes Technology and Therapeutics, 2016, 18, 687-693.	4.4	27
47	3 Screen islet cell autoantibody ELISA: A sensitive and specific ELISA for the combined measurement of autoantibodies to GAD65, to IA-2 and to ZnT8. Clinica Chimica Acta, 2016, 462, 60-64.	1.1	25
48	Peptide serum markers in islet autoantibody-positive children. Diabetologia, 2017, 60, 287-295.	6.3	24
49	HLA-typing, clinical, and immunological characterization of youth with type 2 diabetes mellitus phenotype from the German/Austrian DPV database. Pediatric Diabetes, 2013, 14, 562-574.	2.9	23
50	Intralymphatic Glutamic Acid Decarboxylase-Alum Administration Induced Th2-Like-Specific Immunomodulation in Responder Patients: A Pilot Clinical Trial in Type 1 Diabetes. Journal of Diabetes Research, 2018, 2018, 1-11.	2.3	23
51	GAD autoantibody affinity in schoolchildren from the general population. Diabetologia, 2014, 57, 1911-1918.	6.3	22
52	A classification and regression tree analysis identifies subgroups of childhood type 1 diabetes. EBioMedicine, 2022, 82, 104118.	6.1	21
53	Glutamic Acid Decarboxylase Injection Into Lymph Nodes: Beta Cell Function and Immune Responses in Recent Onset Type 1 Diabetes Patients. Frontiers in Immunology, 2020, 11, 564921.	4.8	19
54	Diabetes Antibody Standardization Program. Diabetes Care, 2011, 34, 2410-2412.	8.6	17

#	Article	lF	CITATIONS
55	IA-2 autoantibody affinity in children at risk for type 1 diabetes. Clinical Immunology, 2012, 145, 224-229.	3.2	16
56	Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nature Communications, 2022, 13, 1514.	12.8	16
57	Spontaneous Peripheral T-cell Responses to the IA-2β (Phogrin) Autoantigen in Young Nonobese Diabetic Mice. Journal of Autoimmunity, 2002, 19, 111-116.	6.5	15
58	Supplementation with <i>Bifidobacterium longum</i> subspecies <i>infantis</i> EVC001 for mitigation of type 1 diabetes autoimmunity: the GPPAD-SINT1A randomised controlled trial protocol. BMJ Open, 2021, 11, e052449.	1.9	15
59	Costs of Public Health Screening of Children for Presymptomatic Type 1 Diabetes in Bavaria, Germany. Diabetes Care, 2022, 45, 837-844.	8.6	14
60	Age, HLA, and Sex Define a Marked Risk of Organ-Specific Autoimmunity in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care, 2019, 42, 1684-1691.	8.6	12
61	A simplified method to assess affinity of insulin autoantibodies. Clinical Immunology, 2010, 137, 415-421.	3.2	10
62	Diabetes-related antibodies in euglycemic subjects. Best Practice and Research in Clinical Endocrinology and Metabolism, 2005, 19, 101-117.	4.7	9
63	Recruiting young pre-symptomatic children for a clinical trial in type 1 diabetes: Insights from the Fr1da insulin intervention study. Contemporary Clinical Trials Communications, 2018, 11, 170-173.	1.1	9
64	Intra-lymphatic administration of GAD-alum in type 1 diabetes: long-term follow-up and effect of a late booster dose (the DIAGNODE Extension trial). Acta Diabetologica, 2022, 59, 687-696.	2.5	9
65	Identification of insulin autoantibodies of IgA isotype that preferentially target non-human insulin. Clinical Immunology, 2007, 124, 77-82.	3.2	8
66	Immune response differs between intralymphatic or subcutaneous administration of GADâ€alum in individuals with recent onset type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2022, 38, e3500.	4.0	8
67	Islet Autoantibody Type-Specific Titer Thresholds Improve Stratification of Risk of Progression to Type 1 Diabetes in Children. Diabetes Care, 2022, 45, 160-168.	8.6	8
68	Insulin autoantibodies with high affinity to the bovine milk protein alpha casein. Clinical and Experimental Immunology, 2011, 164, 42-49.	2.6	7
69	Translating Mucosal Antigen based Prevention of Autoimmune Diabetes to Human. Novartis Foundation Symposium, 2008, 292, 187-201.	1.1	5
70	Soluble interleukin-2 receptor alpha in preclinical type 1 diabetes. Acta Diabetologica, 2014, 51, 517-518.	2.5	4
71	Feasibility and organization of a population-based screening for pre-symptomatic type 1 diabetes in children — evaluation of the Fr1da study. Zeitschrift Fur Gesundheitswissenschaften, 2019, 27, 553-560.	1.6	3
72	Modeling Disease Progression Trajectories from Longitudinal Observational Data. AMIA Annual Symposium proceedings, 2020, 2020, 668-676.	0.2	3

#	Article	IF	CITATIONS
73	Insulin allergy: a diagnostic and therapeutic strategy based on a retrospective cohort and a case–control study. Diabetologia, 2022, , .	6.3	3
74	Anti-CCL3 autoantibodies are not markers of type 1 diabetes when measured by a commercial ELISA method. Diabetologia, 2011, 54, 699-700.	6.3	2
75	Fasting hypoglycemia is associated with disease progression in presymptomatic early stage type 1 diabetes. Pediatric Diabetes, 2018, 19, 1238-1242.	2.9	1
76	Tracing the Pathogenesis of Type 1 Diabetes: A Report on the 44th Annual Meeting of the European Association for the Study of Diabetes (EASD). Review of Diabetic Studies, 2008, 5, 171-174.	1.3	1
77	Autoimmunity in Type 1 Diabetes mellitus. , 2005, 10, 57-71.		Ο
78	10 Autoimmunity in diabetes mellitus. , 2012, , 119-138.		0
79	Modulating the Autoimmune Response in Type 1 Diabetes: A Report on the 64th Scientific Sessions of the ADA, June 2004, Orlando, FL, USA. Review of Diabetic Studies, 2004, 1, 137-137.	1.3	0