Francois Parcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230231/publications.pdf Version: 2024-02-01

		53794	88630
69	14,541	45	70
papers	citations	h-index	g-index
121	121	121	22258
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7, 106-111.	8.8	1,585
2	JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Research, 2018, 46, D260-D266.	14.5	1,232
3	JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2020, 48, D87-D92.	14.5	1,039
4	JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2016, 44, D110-D115.	14.5	968
5	JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Research, 2014, 42, D142-D147.	14.5	915
6	JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2022, 50, D165-D173.	14.5	902
7	A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell, 2001, 105, 793-803.	28.9	650
8	Organization of cellulose synthase complexes involved in primary cell wall synthesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15572-15577.	7.1	542
9	A genetic framework for floral patterning. Nature, 1998, 395, 561-566.	27.8	525
10	Characterization of MADS-domain transcription factor complexes in <i>Arabidopsis</i> flower development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1560-1565.	7.1	439
11	Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant Journal, 2008, 54, 608-620.	5.7	391
12	A Network of Local and Redundant Gene Regulation Governs Arabidopsis Seed Maturation. Plant Cell, 2006, 18, 1642-1651.	6.6	350
13	Regulation of storage protein gene expression in Arabidopsis. Development (Cambridge), 2003, 130, 6065-6073.	2.5	244
14	LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Developmental Cell, 2011, 20, 430-443.	7.0	239
15	The mRNA of the Arabidopsis Gene FT Moves from Leaf to Shoot Apex and Induces Flowering. Science, 2005, 309, 1694-1696.	12.6	238
16	Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature, 2014, 505, 417-421.	27.8	236
17	The Homologous ABI5 and EEL Transcription Factors Function Antagonistically to Fine-Tune Gene Expression during Late Embryogenesis. Plant Cell, 2002, 14, 1391-1403.	6.6	232
18	Flowering: a time for integration. International Journal of Developmental Biology, 2005, 49, 585-593.	0.6	223

FRANCOIS PARCY

#	Article	IF	CITATIONS
19	AtGA3ox2, a Key Gene Responsible for Bioactive Gibberellin Biosynthesis, Is Regulated during Embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology, 2004, 136, 3660-3669.	4.8	216
20	LEAFY blossoms. Trends in Plant Science, 2010, 15, 346-352.	8.8	174
21	<i>Arabidopsis</i> TONNEAU1 Proteins Are Essential for Preprophase Band Formation and Interact with Centrin. Plant Cell, 2008, 20, 2146-2159.	6.6	166
22	How Floral Meristems are Built. Plant Molecular Biology, 2006, 60, 855-870.	3.9	160
23	Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the <i>Arabidopsis </i> LEAFY Transcription Factor Â. Plant Cell, 2011, 23, 1293-1306.	6.6	148
24	Structural basis for oligomerization of auxin transcriptional regulators. Nature Communications, 2014, 5, 3617.	12.8	145
25	Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 2004, 561, 127-131.	2.8	144
26	Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. Journal of Experimental Botany, 2005, 56, 597-603.	4.8	127
27	A Promiscuous Intermediate Underlies the Evolution of LEAFY DNA Binding Specificity. Science, 2014, 343, 645-648.	12.6	117
28	Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant Journal, 1997, 11, 693-702.	5.7	105
29	A Novel Mechanism for the Formation of Actin-Filament Bundles by a Nonprocessive Formin. Current Biology, 2006, 16, 1924-1930.	3.9	97
30	Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO Journal, 2008, 27, 2628-2637.	7.8	97
31	Structural Basis for the Oligomerization of the MADS Domain Transcription Factor SEPALLATA3 in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 3603-3615.	6.6	97
32	Structure of the <i>Arabidopsis</i> TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8107-8112.	7.1	90
33	Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research, 2018, 46, 4966-4977.	14.5	81
34	A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nature Communications, 2016, 7, 11222.	12.8	76
35	A variant of <scp>LEAFY</scp> reveals its capacity to stimulate meristem development by inducing <scp><i>RAX1</i></scp> . Plant Journal, 2013, 74, 678-689.	5.7	71
36	Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. Molecular Plant, 2019, 12, 743-763.	8.3	71

FRANCOIS PARCY

#	Article	IF	CITATIONS
37	A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 2017, 35, 15-22.	7.1	66
38	FUSCA3 from barley unveils a common transcriptional regulation of seedâ€specific genes between cereals and Arabidopsis. Plant Journal, 2008, 53, 882-894.	5.7	60
39	Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower. Frontiers in Plant Science, 2015, 6, 1193.	3.6	58
40	Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63, 1185-1200.	4.8	57
41	Integrating longâ€day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of <i>APETALA1</i> . Plant Journal, 2011, 67, 1094-1102.	5.7	56
42	A network of transcriptional repressors modulates auxin responses. Nature, 2021, 589, 116-119.	27.8	56
43	The LEAFY Floral Regulators in Angiosperms: Conserved Proteins with Diverse Roles. Journal of Plant Biology, 2009, 52, 177-185.	2.1	53
44	Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed Plant Physiology, 2016, 171, pp.00034.2016.	4.8	53
45	Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development (Cambridge), 2002, 129, 2519-27.	2.5	49
46	The LEAFY floral regulator displays pioneer transcription factor properties. Molecular Plant, 2021, 14, 829-837.	8.3	48
47	The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development (Cambridge), 2016, 143, 1108-19.	2.5	45
48	Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Research, 2020, 48, 9637-9648.	14.5	39
49	Capturing Auxin Response Factors Syntax Using DNA Binding Models. Molecular Plant, 2019, 12, 822-832.	8.3	38
50	Cauliflower fractal forms arise from perturbations of floral gene networks. Science, 2021, 373, 192-197.	12.6	37
51	Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genetics, 2019, 15, e1008400.	3.5	35
52	A link between LEAFY and Bâ€gene homologues in <i>Welwitschia mirabilis</i> sheds light on ancestral mechanisms prefiguring floral development. New Phytologist, 2017, 216, 469-481.	7.3	33
53	<scp>LEAFY</scp> activity is postâ€transcriptionally regulated by <scp>BLADE ON PETIOLE</scp> 2 and <scp>CULLIN</scp> 3 in Arabidopsis. New Phytologist, 2018, 220, 579-592.	7.3	32
54	The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nature Communications, 2021, 12, 4760.	12.8	29

FRANCOIS PARCY

#	Article	IF	CITATIONS
55	Contrasted evolutionary trajectories of plant transcription factors. Current Opinion in Plant Biology, 2020, 54, 101-107.	7.1	26
56	Differential regulation of two ABA-inducible genes from Craterostigma plantagineum in transgenic Arabidopsis plants. Plant Molecular Biology, 1996, 30, 343-349.	3.9	21
57	Conservation vs divergence in <i>LEAFY</i> and <i>APETALA1</i> functions between <i>Arabidopsis thaliana</i> and <i>Cardamine hirsuta</i> . New Phytologist, 2017, 216, 549-561.	7.3	21
58	Plant SAM-Domain Proteins Start to Reveal Their Roles. Trends in Plant Science, 2017, 22, 718-725.	8.8	21
59	OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. New Phytologist, 2021, 229, 429-443.	7.3	21
60	A Glimpse beyond Structures in Auxin-Dependent Transcription. Trends in Plant Science, 2016, 21, 574-583.	8.8	20
61	Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus. Nucleic Acids Research, 2019, 47, 11403-11417.	14.5	18
62	Differential activation ofABI3andLEAgenes upon plant parasitic nematode infection. Molecular Plant Pathology, 2005, 6, 321-325.	4.2	16
63	MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency. PLoS ONE, 2015, 10, e0135586.	2.5	16
64	The analysis of entire gene promoters by surface plasmon resonance. Plant Journal, 2009, 59, 851-858.	5.7	15
65	Use of the lacZ reporter gene as an internal control for GUS activity in microprojectile bombarded plant tissue. Plant Science, 1996, 120, 153-160.	3.6	8
66	Response to Comment on "A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity― Science, 2015, 347, 621-621.	12.6	4
67	Transcriptional reprogramming during floral fate acquisition. IScience, 2022, 25, 104683.	4.1	2
68	Self-Assembly of a Ginkgo Oligomerization Domain Creates a Sub-10-nm Honeycomb Architecture on Carbon and Silicon Surfaces with Customizable Pores: Implications for Nanoelectronics, Biosensing, and Biocatalysis. ACS Applied Nano Materials, 2021, 4, 9518-9526.	5.0	0
69	Floral development: an integrated view. , 2016, , 43-116.		0