Delong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229620/publications.pdf Version: 2024-02-01

DELONG

#	Article	IF	CITATIONS
1	RuPHOX–Ru catalyzed asymmetric hydrogenation of α-substituted tetralones <i>via</i> a dynamic kinetic resolution. Chemical Communications, 2022, 58, 4905-4908.	4.1	7
2	Pd-Catalyzed Asymmetric Allylic Substitution Cascade of Substituted 4-Hydroxy-2 <i>H</i> -pyrones with <i>meso</i> -Allyl Dicarbonates. Organic Letters, 2022, 24, 3440-3444.	4.6	13
3	Rhodium atalyzed Asymmetric Hydrogenation of 3â€Benzoylaminocoumarins for the Synthesis of Chiral 3â€Amino Dihydrocoumarins. Angewandte Chemie - International Edition, 2021, 60, 23602-23607.	13.8	22
4	Desymmetrization of <i>meso-</i> Dicarbonatecyclohexene with β-Hydrazino Carboxylic Esters via a Pd-Catalyzed Allylic Substitution Cascade. Organic Letters, 2020, 22, 8836-8841.	4.6	16
5	The design and synthesis of a novel chiral 1,1′-disubsitituted ruthenocenyl phosphine–oxazoline ligand. Research on Chemical Intermediates, 2020, 46, 5101-5115.	2.7	0
6	Pd-Catalyzed Asymmetric Allylic Substitution Cascade of But-2-ene-1,4-diyl Dimethyl Dicarbonate for the Synthesis of Chiral 2,3-Dihydrofurans. Organic Letters, 2020, 22, 4680-4685.	4.6	19
7	Pd atalyzed Asymmetric Allylic Substitution Annulation Using Enolizable Ketimines as Nucleophiles: An Alternative Approach to Chiral Tetrahydroindoles. Advanced Synthesis and Catalysis, 2020, 362, 2059-2069.	4.3	12
8	RuPHOX-Ru-Catalyzed Selective Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Pentanones. Organometallics, 2019, 38, 3970-3978.	2.3	20
9	Pd-catalyzed asymmetric allylic substitution cascade using α-(pyridin-1-yl)-acetamides formed <i>in situ</i> as nucleophiles. Chemical Science, 2019, 10, 1767-1772.	7.4	25
10	Selective Asymmetric Hydrogenation of Four-Membered <i>Exo</i> -α,β-Unsaturated Cyclobutanones Using RuPHOX–Ru as a Catalyst. Organic Letters, 2019, 21, 4331-4335.	4.6	24
11	Synthesis of chiral γ-lactones via a RuPHOX-Ru catalyzed asymmetric hydrogenation of aroylacrylic acids. Tetrahedron, 2019, 75, 3643-3649.	1.9	13
12	A Pd-catalyzed asymmetric allylic substitution cascade <i>via</i> an asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. Chemical Communications, 2019, 55, 13295-13298.	4.1	21
13	Synthesis of Enantiopure Î³â€Łactones via a RuPHOXâ€Ru Catalyzed Asymmetric Hydrogenation of γâ€Keto Aci Advanced Synthesis and Catalysis, 2019, 361, 1146-1153.	ds. 4.3	21
14	Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of <i>N</i> -Carbonylmethylene-2-Pyridones. Acta Chimica Sinica, 2019, 77, 993.	1.4	11
15	Asymmetric Transfer and Pressure Hydrogenation with Earthâ€Abundant Transition Metal Catalysts. Chinese Journal of Chemistry, 2018, 36, 443-454.	4.9	148
16	Synthesis of chiral chromanols via a RuPHOX–Ru catalyzed asymmetric hydrogenation of chromones. Chemical Communications, 2018, 54, 13571-13574.	4.1	26
17	lridium-Catalyzed Asymmetric Hydrogenation of β,γ-Unsaturated γ-Lactams: Scope and Mechanistic Studies. Organic Letters, 2017, 19, 1144-1147.	4.6	44
18	Construction of Chiral-Fused Tricyclic ^î 3-Lactams via a trans-Perhydroindolic Acid-Catalyzed Asymmetric Domino Reaction. Organic Letters, 2017, 19, 2925-2928.	4.6	5

DELONG LIU

#	Article	IF	CITATIONS
19	Synthesis of Chiral γ-Lactams via in Situ Elimination/Iridium-Catalyzed Asymmetric Hydrogenation of Racemic γ-Hydroxy γ-Lactams. Organic Letters, 2017, 19, 1886-1889.	4.6	12
20	A new and convenient approach for the synthesis of P-stereogenic intermediates bearing a tert-butyl(methyl)phosphino group. Research on Chemical Intermediates, 2017, 43, 4959-4966.	2.7	9
21	The Construction of Chiral Fused Azabicycles Using a Pd-Catalyzed Allylic Substitution Cascade and Asymmetric Desymmetrization Strategy. Organic Letters, 2017, 19, 238-241.	4.6	34
22	Synthesis of Chiral α,β-Unsaturated γ-Amino Esters via Pd-Catalyzed Asymmetric Allylic Amination. Organic Letters, 2017, 19, 4251-4254.	4.6	33
23	The Synthesis of Chiral αâ€Aryl αâ€Hydroxy Carboxylic Acids via RuPHOXâ€Ru Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2017, 359, 3665-3673.	4.3	26
24	Palladiumâ€Catalyzed Chemo―and Enantioselective Câ^'O Bond Cleavage of αâ€Acyloxy Ketones by Hydrogenolysis. Angewandte Chemie - International Edition, 2016, 55, 8444-8447.	13.8	39
25	Palladiumâ€Catalyzed Chemo―and Enantioselective Câ^'O Bond Cleavage of αâ€Acyloxy Ketones by Hydrogenolysis. Angewandte Chemie, 2016, 128, 8584-8587.	2.0	17
26	1,3-Dithianes as Acyl Anion Equivalents in Pd-Catalyzed Asymmetric Allylic Substitution. Organic Letters, 2016, 18, 6296-6299.	4.6	30
27	Asymmetric Hydrogenation of α-Substituted Acrylic Acids Catalyzed by a Ruthenocenyl Phosphino-oxazoline–Ruthenium Complex. Organic Letters, 2016, 18, 2122-2125.	4.6	59
28	Asymmetric Hydrogenation of βâ€Secondary Amino Ketones Catalyzed by a Ruthenocenyl Phosphinoâ€oxazolineâ€ruthenium Complex (RuPHOXâ€Ru): the Synthesis of γâ€Secondary Amino Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 3262-3272.	4.3	45
29	The Construction of 3â€Methylâ€4â€arylpiperidines <i>via</i> a <i>trans</i> ―Perhydroindolic Acidâ€Catalyzed Asymmetric Azaâ€Diels–Alder Reaction. Advanced Synthesis and Catalysis, 2015, 357, 3627-3638.	4.3	42
30	P-Stereogenic pincer iridium complexes: Synthesis, structural characterization and application in asymmetric hydrogenation. Journal of Organometallic Chemistry, 2015, 791, 41-45.	1.8	20
31	Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters. Organic Letters, 2015, 17, 5768-5771.	4.6	64
32	P-stereogenic PNP pincer-Pd catalyzed intramolecular hydroamination of amino-1,3-dienes. Organic and Biomolecular Chemistry, 2015, 13, 2694-2702.	2.8	26
33	Pd-catalyzed asymmetric allylic amination using easily accessible metallocenyl P,N-ligands. Organic and Biomolecular Chemistry, 2015, 13, 4248-4254.	2.8	17
34	Temperature-controlled switchable preparation of ferrocene bis(oxazoline-phosphine) ligands with different planar chiralities and their coordination behaviors. Tetrahedron, 2015, 71, 5112-5118.	1.9	10
35	The Design and Synthesis of Planar Chiral Ligands and Their Application to Asymmetric Catalysis. Synlett, 2014, 25, 615-630.	1.8	66
36	Palladiumâ€Catalyzed Allylic Alkylation of Simple Ketones with Allylic Alcohols and Its Mechanistic Study. Angewandte Chemie - International Edition, 2014, 53, 6776-6780.	13.8	160

Delong Liu

#	Article	IF	CITATIONS
37	Hydrogen-Bond-Activated Palladium-Catalyzed Allylic Alkylation via Allylic Alkyl Ethers: Challenging Leaving Groups. Organic Letters, 2014, 16, 1570-1573.	4.6	111
38	Synthesis of Chiral γ-Amino Alcohols via a RuPHOX-Ru Catalyzed Asymmetric Hydrogenation of β-Imide Ketones. Chinese Journal of Organic Chemistry, 2014, 34, 1766.	1.3	24
39	The synthesis of chiral β-aryl-α,β-unsaturated amino alcohols via a Pd-catalyzed asymmetric allylic amination. Organic and Biomolecular Chemistry, 2013, 11, 7412.	2.8	35
40	Asymmetric hydrogenation of β-amino ketones with the bimetallic complex RuPHOX-Ru as the chiral catalyst. Organic and Biomolecular Chemistry, 2013, 11, 3855.	2.8	48
41	Asymmetric Domino Double Michael Addition of Nitroolefins and Aldehyde Esters with trans-Perhydroindolic Acid as an Organocatalyst. Synthesis, 2013, 45, 1612-1623.	2.3	16
42	The Synthesis of <i>trans</i> â€Perhydroindolic Acids and their Application in Asymmetric Domino Reactions of Aldehyde Esters with β,γâ€Unsaturated αâ€Keto Esters. Advanced Synthesis and Catalysis, 2012, 354, 3311-3325.	4.3	30
43	An Efficient Asymmetric Domino Reaction of Amino Aldehyde to <i>β</i> , <i>γ</i> â€Unsaturated <i>α</i> â€Keto Esters Using <i>trans</i> â€Perhydroindolic Acid as a Chiral Organocatalyst. Chinese Journal of Chemistry, 2012, 30, 2681-2687.) 4.9	3
44	Efficient Ru(II)-catalyzed asymmetric hydrogenation of simple ketones with C2-symmetric planar chiral metallocenyl phosphinooxazoline ligands. Tetrahedron, 2012, 68, 3295-3299.	1.9	38
45	Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes. Organic and Biomolecular Chemistry, 2011, 9, 1871.	2.8	92
46	C–N Bond Cleavage of Allylic Amines via Hydrogen Bond Activation with Alcohol Solvents in Pd-Catalyzed Allylic Alkylation of Carbonyl Compounds. Journal of the American Chemical Society, 2011, 133, 19354-19357.	13.7	251
47	Enamines: efficient nucleophiles for the palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2009, 65, 512-517.	1.9	59
48	Asymmetric hydrogenation of simple ketones with planar chiral ruthenocenyl phosphinooxazoline ligands. Tetrahedron: Asymmetry, 2009, 20, 2510-2512.	1.8	33
49	Enantioselective transfer hydrogenation of ketones with planar chiralÂruthenocene-based phosphinooxazoline ligands. Tetrahedron, 2008, 64, 3561-3566.	1.9	40
50	Reversal in enantioselectivity for the palladium-catalyzed asymmetric allylic substitution with novel metallocene-based planar chiral diphosphine ligands. Tetrahedron Letters, 2008, 49, 1012-1015.	1.4	34
51	Novel <i>C</i> ₂ -Symmetric Planar Chiral Diphosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Allylic Substitutions. Journal of Organic Chemistry, 2007, 72, 6992-6997.	3.2	52
52	The synthesis of novel C2-symmetric P,N-chelation ruthenocene ligands and their application in palladium-catalyzed asymmetric allylic substitution. Tetrahedron Letters, 2007, 48, 585-588.	1.4	45
53	Palladium-catalyzed asymmetric allylic alkylation with an enamine as the nucleophilic reagent. Tetrahedron Letters, 2007, 48, 7591-7594.	1.4	67
54	Kinetic resolution of azaflavanones via a RuPHOX-Ru catalyzed asymmetric hydrogenation. Organic Chemistry Frontiers, 0, , .	4.5	7