Youngmi Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229096/publications.pdf

Version: 2024-02-01

236925 243625 3,516 46 25 44 citations h-index g-index papers 47 47 47 4320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nature Communications, 2022, 13, 578.	12.8	24
2	Pathological Contribution of Extracellular Vesicles and Their MicroRNAs to Progression of Chronic Liver Disease. Biology, 2022, 11, 637.	2.8	5
3	Editorial Expression of Concern: Tumor necrosis factor-inducible gene 6 protein ameliorates chronic liver damage by promoting autophagy formation in mice. Experimental and Molecular Medicine, 2021, 53, 300-300.	7.7	0
4	sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Molecular Therapy, 2021, 29, 1471-1486.	8.2	32
5	Pathophysiological Aspects of Alcohol Metabolism in the Liver. International Journal of Molecular Sciences, 2021, 22, 5717.	4.1	98
6	Mesenchymal Stem Cells Influence Activation of Hepatic Stellate Cells, and Constitute a Promising Therapy for Liver Fibrosis. Biomedicines, 2021, 9, 1598.	3.2	18
7	Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice. Development & Reproduction, 2021, 25, 279-291.	0.4	1
8	Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells. BMB Reports, 2020, 53, 425-430.	2.4	5
9	Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Science and Biotechnology, 2019, 28, 261-267.	2.6	46
10	Tumor necrosis factor-inducible gene 6 reprograms hepatic stellate cells into stem-like cells, which ameliorates liver damage in mouse. Biomaterials, 2019, 219, 119375.	11.4	23
11	Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells, 2019, 8, 1259.	4.1	67
12	Hepatoprotective Effect of Kombucha Tea in Rodent Model of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 2019, 20, 2369.	4.1	26
13	Liver-Derived Exosomes and Their Implications in Liver Pathobiology. International Journal of Molecular Sciences, 2018, 19, 3715.	4.1	67
14	RNA Binding Proteins Control Transdifferentiation of Hepatic Stellate Cells into Myofibroblasts. Cellular Physiology and Biochemistry, 2018, 48, 1215-1229.	1.6	13
15	MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver. Cell Death and Disease, 2018, 9, 721.	6.3	21
16	Thymosin beta-4 regulates activation of hepatic stellate cells via hedgehog signaling. Scientific Reports, 2017, 7, 3815.	3.3	19
17	Radiation-induced liver disease: current understanding and future perspectives. Experimental and Molecular Medicine, 2017, 49, e359-e359.	7.7	149
18	Tumor necrosis factor-inducible gene 6 protein ameliorates chronic liver damage by promoting autophagy formation in mice. Experimental and Molecular Medicine, 2017, 49, e380-e380.	7.7	13

#	Article	IF	Citations
19	MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus. International Journal of Molecular Sciences, 2016, 17, 961.	4.1	32
20	MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nature Communications, 2016, 7, 10993.	12.8	200
21	Hedgehog Signaling is Associated with Liver Response to Fractionated Irradiation in Mice. Cellular Physiology and Biochemistry, 2016, 40, 263-276.	1.6	14
22	Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage. Food Science and Biotechnology, 2016, 25, 861-866.	2.6	24
23	MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World Journal of Gastroenterology, 2016, 22, 6652.	3.3	31
24	MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Scientific Reports, 2015, 5, 14135.	3.3	114
25	Hepatic Stellate Cells Express Thymosin Beta 4 in Chronically Damaged Liver. PLoS ONE, 2015, 10, e0122758.	2.5	23
26	Potential Role of Thymosin Beta 4 in Liver Fibrosis. International Journal of Molecular Sciences, 2015, 16, 10624-10635.	4.1	20
27	Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury. Stem Cell Research and Therapy, 2015, 6, 20.	5.5	34
28	Potential role of Hedgehog signaling and microRNA-29 in liver fibrosis of IKK \hat{I}^2 -deficient mouse. Journal of Molecular Histology, 2014, 45, 103-112.	2.2	24
29	Hedgehog signaling influences gender-specific response of liver to radiation in mice. Hepatology International, 2013, 7, 1065-1074.	4.2	12
30	Hedgehog Signaling Regulates the Repair Response in Mouse Liver Damaged by Irradiation. Radiation Research, 2013, 179, 69-75.	1.5	29
31	Potential Role of Hedgehog Pathway in Liver Response to Radiation. PLoS ONE, 2013, 8, e74141.	2.5	41
32	Somatostatin stimulates the migration of hepatic oval cells in the injured rat liver. Liver International, 2012, 32, 312-320.	3.9	6
33	Hedgehog Signaling Antagonist Promotes Regression of Both Liver Fibrosis and Hepatocellular Carcinoma in a Murine Model of Primary Liver Cancer. PLoS ONE, 2011, 6, e23943.	2.5	134
34	Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology, 2011, 53, 106-115.	7.3	224
35	Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology, 2010, 51, 1712-1723.	7.3	173
36	Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology, 2010, 51, 1998-2007.	7.3	254

#	Article	IF	CITATION
37	Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology, 2010, 52, 278-290.	7.3	47
38	Signals from dying hepatocytes trigger growth of liver progenitors. Gut, 2010, 59, 655-665.	12.1	143
39	Non-Alcoholic Steatohepatitis Pathogenesis: Role of Repair in Regulating the Disease Progression. Digestive Diseases, 2010, 28, 225-228.	1.9	26
40	Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. American Journal of Physiology - Renal Physiology, 2009, 297, G1093-G1106.	3.4	197
41	Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology, 2009, 50, 1421-1430.	7.3	209
42	Hedgehog-Mediated Epithelial-to-Mesenchymal Transition and Fibrogenic Repair in Nonalcoholic Fatty Liver Disease. Gastroenterology, 2009, 137, 1478-1488.e8.	1.3	232
43	Fate-Mapping Evidence That Hepatic Stellate Cells Are Epithelial Progenitors in Adult Mouse Livers. Stem Cells, 2008, 26, 2104-2113.	3.2	186
44	Accumulation of Hedgehog-Responsive Progenitors Parallels Alcoholic Liver Disease Severity in Mice and Humans. Gastroenterology, 2008, 134, 1532-1543.e3.	1.3	153
45	Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. Journal of Clinical Investigation, 2008, 118, 3331-42.	8.2	284
46	A potential role of somatostatin and its receptor SSTR4 in the migration of hepatic oval cells. Laboratory Investigation, 2006, 86, 477-489.	3.7	23