Giannino Del Sal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227507/publications.pdf Version: 2024-02-01

130 papers	12,151 citations	23567 58 h-index	26613 107 g-index
131	131	131	15957
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Letters, 2022, 534, 215612.	7.2	6
2	TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nature Communications, 2022, 13, 2302.	12.8	11
3	Anticancer innovative therapy congress: Highlights from the 10th anniversary edition. Cytokine and Growth Factor Reviews, 2021, 59, 1-8.	7.2	4
4	The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Reports, 2021, 36, 109694.	6.4	15
5	Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nature Communications, 2020, 11, 3945.	12.8	52
6	FUS-dependent loading of SUV39H1 to OCT4 pseudogene-IncRNA programs a silencing complex with OCT4 promoter specificity. Communications Biology, 2020, 3, 632.	4.4	4
7	Expression and subcellular localization of the bromodomain-containing protein 7 is a prognostic biomarker in breast cancer. Anti-Cancer Drugs, 2020, 31, 423-430.	1.4	2
8	Amplifying Tumor–Stroma Communication: An Emerging Oncogenic Function of Mutant p53. Frontiers in Oncology, 2020, 10, 614230.	2.8	10
9	Breast Cancer Organoids Model Patient-Specific Response to Drug Treatment. Cancers, 2020, 12, 3869.	3.7	43
10	A mutant p53/Hif1α/miR-30d axis reprograms the secretory pathway promoting the release of a prometastatic secretome. Cell Stress, 2020, 4, 261-264.	3.2	1
11	Mutant p53 improves cancer cells' resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6. Oncogene, 2019, 38, 6184-6195.	5.9	56
12	Isoprenylcysteine carboxy methyltransferase (ICMT) is associated with tumor aggressiveness and its expression is controlled by the p53 tumor suppressor. Journal of Biological Chemistry, 2019, 294, 5060-5073.	3.4	15
13	Oncogenic Hijacking of the PIN1 Signaling Network. Frontiers in Oncology, 2019, 9, 94.	2.8	21
14	Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nature Communications, 2019, 10, 1326.	12.8	158
15	Mutant p53 as a guardian of the cancer cell. Cell Death and Differentiation, 2019, 26, 199-212.	11.2	523
16	The stiff RhoAd from mevalonate to mutant p53. Cell Death and Differentiation, 2018, 25, 645-647.	11.2	21
17	Mechanical cues control mutant p53 stability through a mevalonate–RhoA axis. Nature Cell Biology, 2018, 20, 28-35.	10.3	104
18	MiR-181 family-specific behavior in different cancers: a meta-analysis view. Cancer and Metastasis Reviews, 2018, 37, 17-32.	5.9	63

#	Article	IF	CITATIONS
19	Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells. Cell Death and Differentiation, 2018, 25, 1224-1238.	11.2	33
20	Complexes formed by mutant p53 and their roles in breast cancer. Breast Cancer: Targets and Therapy, 2018, Volume 10, 101-112.	1.8	14
21	GDA, a web-based tool for Genomics and Drugs integrated analysis. Nucleic Acids Research, 2018, 46, W148-W156.	14.5	9
22	Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget, 2018, 9, 20508-20523.	1.8	86
23	Glucocorticoid receptor signalling activates YAP in breast cancer. Nature Communications, 2017, 8, 14073.	12.8	129
24	A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action. Nature Communications, 2017, 8, 15772.	12.8	102
25	Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Oncolmmunology, 2017, 6, e1313371.	4.6	11
26	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	27.8	495
27	Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Molecular Cell, 2017, 68, 1134-1146.e6.	9.7	73
28	Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7623-7628.	7.1	38
29	PIN1 in breast development and cancer: a clinical perspective. Cell Death and Differentiation, 2017, 24, 200-211.	11.2	51
30	<i>MCM7</i> and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis, 2017, 38, 64-75.	2.8	52
31	Targeting mutant p53 in cancer: a long road to precision therapy. FEBS Journal, 2017, 284, 837-850.	4.7	55
32	Mutant p53–Nrf2 axis regulates the proteasome machinery in cancer. Molecular and Cellular Oncology, 2017, 4, e1217967.	0.7	12
33	Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Frontiers in Oncology, 2017, 7, 231.	2.8	3
34	Dynamic regulation of Pin1 expression and function during zebrafish development. PLoS ONE, 2017, 12, e0175939.	2.5	17
35	Effects of Pin1 Loss in HdhQ111 Knock-in Mice. Frontiers in Cellular Neuroscience, 2016, 10, 110.	3.7	15
36	Multi-omics reveals global effects of mutant p53 gain-of-function. Cell Cycle, 2016, 15, 3009-3010.	2.6	3

#	Article	IF	CITATIONS
37	<scp>YAP</scp> enhances the proâ€proliferative transcriptional activity of mutant p53 proteins. EMBO Reports, 2016, 17, 188-201.	4.5	154
38	Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nature Cell Biology, 2016, 18, 897-909.	10.3	205
39	Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene, 2016, 35, 3760-3770.	5.9	43
40	Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget, 2016, 7, 21786-21798.	1.8	28
41	Mutant p53: One, No One, and One Hundred Thousand. Frontiers in Oncology, 2015, 5, 289.	2.8	71
42	Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2048-2060.	2.4	24
43	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	7.1	247
44	p53 orchestrates calcium signaling in vivo. Cell Cycle, 2015, 14, 1343-1344.	2.6	4
45	Notch is a direct negative regulator of the DNA-damage response. Nature Structural and Molecular Biology, 2015, 22, 417-424.	8.2	68
46	Impairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie, 2015, 112, 85-95.	2.6	29
47	Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes. European Heart Journal, 2015, 36, 817-828.	2.2	75
48	MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget, 2015, 6, 38854-38865.	1.8	54
49	Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. EMBO Molecular Medicine, 2014, 6, 295-295.	6.9	3
50	Mutant p53 Reprograms TNF Signaling in Cancer Cells through Interaction with the Tumor Suppressor DAB2IP. Molecular Cell, 2014, 56, 617-629.	9.7	136
51	Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nature Communications, 2014, 5, 5066.	12.8	45
52	DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Human Molecular Genetics, 2014, 23, 3830-3842.	2.9	33
53	Prolylâ€isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Molecular Medicine, 2014, 6, 99-119.	6.9	130
54	Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 2014, 16, 357-366.	10.3	630

#	Article	IF	CITATIONS
55	The cytoplasmic side of p53's oncosuppressive activities. FEBS Letters, 2014, 588, 2600-2609.	2.8	104
56	Disarming mutant p53 oncogenic function. Pharmacological Research, 2014, 79, 75-87.	7.1	20
57	Prolyl isomerase Pin1 and protein kinase HIPK2 cooperate to promote cortical neurogenesis by suppressing Groucho/TLE:Hes1-mediated inhibition of neuronal differentiation. Cell Death and Differentiation, 2014, 21, 321-332.	11.2	23
58	Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion, 2014, 19, 88-96.	3.4	33
59	Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.	2.4	10
60	HIV-1 Integrase Binding to its Cellular Partners: A Perspective from Computational Biology. Current Pharmaceutical Design, 2014, 20, 3412-3421.	1.9	1
61	Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. EMBO Molecular Medicine, 2013, 5, 707-722.	6.9	49
62	Prolyl Isomerase PIN1 Regulates DNA Double-Strand Break Repair by Counteracting DNA End Resection. Molecular Cell, 2013, 50, 333-343.	9.7	76
63	Autophosphorylation and Pin1 binding coordinate DNA damage-induced HIPK2 activation and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4203-E4212.	7.1	42
64	Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle, 2013, 12, 1679-1687.	2.6	109
65	Immunohistochemical Characterization of a Renal Nephroblastoma in a <i>Trp</i> 53-mutant and Prolyl Isomerase 1-deficient Mouse. Journal of Toxicologic Pathology, 2013, 26, 423-427.	0.7	2
66	The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death and Differentiation, 2013, 20, 198-208.	11.2	83
67	HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget, 2013, 4, 1293-1308.	1.8	145
68	The PML nuclear bodies-associated protein TTRAP regulates ribosome biogenesis in nucleolar cavities upon proteasome inhibition. Cell Death and Differentiation, 2012, 19, 488-500.	11.2	25
69	Polo-like kinase 2: A new exploitable target to undermine mutant p53-dependent chemoresistance. Cell Cycle, 2012, 11, 438-438.	2.6	1
70	The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis, 2012, 33, 2007-2017.	2.8	236
71	A Pin1/Mutant p53 Axis Promotes Aggressiveness inÂBreast Cancer. Cancer Cell, 2011, 20, 79-91.	16.8	256
72	Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17979-17984.	7.1	64

#	Article	IF	CITATIONS
73	p73 as a Pharmaceutical Target for Cancer Therapy. Current Pharmaceutical Design, 2011, 17, 578-590.	1.9	33
74	Pin1 and WWP2 regulate <i>GluR2</i> Q/R site RNA editing by ADAR2 with opposing effects. EMBO Journal, 2011, 30, 4211-4222.	7.8	115
75	Wiring the oncogenic circuitry: Pin1 unleashes mutant p53. Oncotarget, 2011, 2, 654-656.	1.8	22
76	p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death and Differentiation, 2010, 17, 901-911.	11.2	196
77	BRD7 is a candidate tumour suppressor gene required for p53 function. Nature Cell Biology, 2010, 12, 380-389.	10.3	194
78	Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nature Medicine, 2010, 16, 329-333.	30.7	101
79	Parkinson Disease-associated DJ-1 Is Required for the Expression of the Glial Cell Line-derived Neurotrophic Factor Receptor RET in Human Neuroblastoma Cells. Journal of Biological Chemistry, 2010, 285, 18565-18574.	3.4	37
80	A genome-scale protein interaction profile of <i>Drosophila</i> p53 uncovers additional nodes of the human p53 network. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6322-6327.	7.1	61
81	Proline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells. Journal of Biological Chemistry, 2010, 285, 34518-34527.	3.4	28
82	Improving pharmacological rescue of p53 function: RITA targets mutant p53. Cell Cycle, 2010, 9, 2059-2062.	2.6	5
83	Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle, 2010, 9, 2849-2853.	2.6	29
84	Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα. Cancer Research, 2009, 69, 1016-1026.	0.9	57
85	Rrs1 Is Involved in Endoplasmic Reticulum Stress Response in Huntington Disease. Journal of Biological Chemistry, 2009, 284, 18167-18173.	3.4	137
86	Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson's disease-associated DJ-1 missense mutations. Cell Death and Differentiation, 2009, 16, 428-438.	11.2	49
87	The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nature Cell Biology, 2009, 11, 133-142.	10.3	154
88	The evolutionary conserved gene C16orf35 encodes a nucleo-cytoplasmic protein that interacts with p73. Biochemical and Biophysical Research Communications, 2009, 388, 428-433.	2.1	11
89	p53-Mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y. International Journal of Biochemistry and Cell Biology, 2008, 40, 2110-2119.	2.8	32
90	Modification of Drosophila p53 by SUMO Modulates Its Transactivation and Pro-apoptotic Functions. Journal of Biological Chemistry, 2008, 283, 20848-20856.	3.4	32

#	Article	IF	CITATIONS
91	Peptide Aptamers Targeting Mutant p53 Induce Apoptosis in Tumor Cells. Cancer Research, 2008, 68, 6550-6558.	0.9	42
92	Activation of the p53 pathway down-regulates the osteoprotegerin expression and release by vascular endothelial cells. Blood, 2008, 111, 1287-1294.	1.4	30
93	The Prolyl Isomerase Pin1 Affects Che-1 Stability in Response to Apoptotic DNA Damage. Journal of Biological Chemistry, 2007, 282, 19685-19691.	3.4	40
94	Protein Kinase C ß and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66 ^{Shc} . Science, 2007, 315, 659-663.	12.6	448
95	Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO Journal, 2007, 26, 1761-1771.	7.8	86
96	The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Structural and Molecular Biology, 2007, 14, 912-920.	8.2	147
97	iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72–polymorphic p53. Nature Genetics, 2006, 38, 1133-1141.	21.4	228
98	Some p53-binding proteins that can function as arbiters of life and death. Cell Death and Differentiation, 2006, 13, 984-993.	11.2	82
99	Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO Journal, 2006, 25, 1883-1894.	7.8	69
100	HMGA1 Inhibits the Function of p53 Family Members in Thyroid Cancer Cells. Cancer Research, 2006, 66, 2980-2989.	0.9	87
101	Direct p53 Transcriptional Repression: In Vivo Analysis of CCAAT-Containing G 2 /M Promoters. Molecular and Cellular Biology, 2005, 25, 3737-3751.	2.3	202
102	Mutations in Proline 82 of p53 Impair Its Activation by Pin1 and Chk2 in Response to DNA Damage. Molecular and Cellular Biology, 2005, 25, 5380-5388.	2.3	66
103	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 18, 447-459.	9.7	318
104	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 19, 429.	9.7	3
105	Caspase-dependent Regulation of Histone Deacetylase 4 Nuclear-Cytoplasmic Shuttling Promotes Apoptosis. Molecular Biology of the Cell, 2004, 15, 2804-2818.	2.1	128
106	KeePin' the p53 Family in Good Shape. Cell Cycle, 2004, 3, 903-909.	2.6	22
107	Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8870-8875.	7.1	61
108	The Transcriptional Repressor hDaxx Potentiates p53-dependent Apoptosis. Journal of Biological Chemistry, 2004, 279, 48013-48023.	3.4	61

#	Article	IF	CITATIONS
109	hGTSE-1 Expression Stimulates Cytoplasmic Localization of p53. Journal of Biological Chemistry, 2004, 279, 11744-11752.	3.4	44
110	Pin1 Links the Activities of c-Abl and p300 in Regulating p73 Function. Molecular Cell, 2004, 14, 625-636.	9.7	165
111	Regulation of p53 functions: let's meet at the nuclear bodies. Current Opinion in Cell Biology, 2003, 15, 351-357.	5.4	46
112	Transactivation properties of c-Myb are critically dependent on two SUMO-1 acceptor sites that are conjugated in a PIASy enhanced manner. FEBS Journal, 2003, 270, 1338-1348.	0.2	61
113	Adenosine deaminase, a key enzyme in DNA precursors control, is a new p73 target. Oncogene, 2003, 22, 8738-8748.	5.9	16
114	Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2. Molecular and Cellular Biology, 2003, 23, 9104-9116.	2.3	140
115	The Cell Cycle-regulated Protein Human GTSE-1 Controls DNA Damage-induced Apoptosis by Affecting p53 Function. Journal of Biological Chemistry, 2003, 278, 30356-30364.	3.4	71
116	Physical Interaction with Human Tumor-derived p53 Mutants Inhibits p63 Activities. Journal of Biological Chemistry, 2002, 277, 18817-18826.	3.4	203
117	The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature, 2002, 419, 853-857.	27.8	390
118	Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biology, 2002, 4, 11-19.	10.3	636
119	p53 is involved in the p120E4F-mediated growth arrest. Oncogene, 2000, 19, 188-199.	5.9	42
120	The growth suppressinggas1product is a GPI-linked protein. FEBS Letters, 2000, 481, 152-158.	2.8	60
121	Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO Journal, 1999, 18, 6462-6471.	7.8	463
122	A proline-rich motif in p53 is required for transactivation- independent growth arrest as induced by Gas1. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4675-4680.	7.1	88
123	CDNA cloning of the neutrophil bactericidal peptide indolicidin. Biochemical and Biophysical Research Communications, 1992, 187, 467-472.	2.1	76
124	The growth arrest-specific gene, gas1, is involved in growth suppression. Cell, 1992, 70, 595-607.	28.9	263
125	cDNA sequence analysis of an antibiotic dodecapeptide from neutrophils. FEBS Letters, 1992, 314, 187-190.	2.8	61
126	The complexity of cell proliferation control in mammalian cells. Current Opinion in Cell Biology, 1991, 3, 276-281.	5.4	28

#	Article	IF	CITATIONS
127	A simple discontinuous buffer system for increased resolution and speed in gel electrophoretic analysis of DNA sequence. Nucleic Acids Research, 1990, 18, 204-204.	14.5	15
128	Evidence of enhancement of theras oncogene protein product (p21) in a spectrum of human tumors. International Journal of Cancer, 1989, 43, 431-435.	5.1	35
129	A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Research, 1988, 16, 9878-9878.	14.5	258
130	A simple and fast method for preparing single stranded DNA template suitable for sequencing. Nucleic Acids Research, 1987, 15, 10047-10047.	14.5	11