

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227068/publications.pdf Version: 2024-02-01

		623734	713466
21	1,339	14	21
papers	citations	h-index	g-index
23	23	23	2223
all docs	docs citations	times ranked	citing authors

Molu

#	Article	IF	CITATIONS
1	Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20619-20626.	10.3	301
2	Boosting CO Production in Electrocatalytic CO ₂ Reduction on Highly Porous Zn Catalysts. ACS Catalysis, 2019, 9, 3783-3791.	11.2	247
3	3D hierarchical porous indium catalyst for highly efficient electroreduction of CO ₂ . Journal of Materials Chemistry A, 2019, 7, 4505-4515.	10.3	134
4	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	30.8	114
5	Hierarchically macro–mesoporous ZrO2–TiO2 composites with enhanced photocatalytic activity. Ceramics International, 2015, 41, 5749-5757.	4.8	86
6	Universal approach toward high-efficiency two-dimensional perovskite solar cells <i>via</i> a vertical-rotation process. Energy and Environmental Science, 2020, 13, 3093-3101.	30.8	82
7	Enhanced Electrocatalytic CO ₂ Reduction to C ₂₊ Products by Adjusting the Local Reaction Environment with Polymer Binders. Advanced Energy Materials, 2022, 12, .	19.5	71
8	Research Progress and Model Development of Crystal Layer Growth and Impurity Distribution in Layer Melt Crystallization: A Review. Industrial & Engineering Chemistry Research, 2014, 53, 13211-13227.	3.7	46
9	Study on antibacterial mechanism of Mg(OH) 2 nanoparticles. Materials Letters, 2014, 134, 286-289.	2.6	43
10	Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO ₂ –Au@C Particles with Core–Shell Nanostructures. Langmuir, 2015, 31, 5190-5197.	3.5	34
11	Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co (CoO)1– catalyst for CO2 hydrogenation. Journal of Energy Chemistry, 2021, 53, 241-250.	12.9	32
12	Tandem effect of Ag@C@Cu catalysts enhances ethanol selectivity for electrochemical CO2 reduction in flow reactors. Cell Reports Physical Science, 2022, 3, 100949.	5.6	31
13	Support-Dependent Cu–In Bimetallic Catalysts for Tailoring the Activity of Reverse Water Gas Shift Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1524-1535.	6.7	26
14	Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving. ACS Applied Materials & Interfaces, 2019, 11, 16729-16736.	8.0	19
15	Near ambient-pressure X-ray photoelectron spectroscopy study of CO2 activation and hydrogenation on indium/copper surface. Journal of Catalysis, 2021, 395, 315-324.	6.2	15
16	Preparation of Double-Shelled C/SiO ₂ Hollow Spheres with Enhanced Adsorption Capacity. Industrial & Engineering Chemistry Research, 2015, 54, 641-648.	3.7	14
17	Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8, 233-239.	4.4	13
18	Thermal stability of size-selected copper nanoparticles: Effect of size, support and CO2 hydrogenation atmosphere. Applied Surface Science, 2020, 510, 145439.	6.1	13

Mo	Li

#	Article	IF	CITATIONS
19	Revealing the Surface Chemistry for CO ₂ Hydrogenation on Cu/CeO _{2–<i>x</i>} Using Near-Ambient-Pressure X-ray Photoelectron Spectroscopy. ACS Applied Energy Materials, 2021, 4, 12326-12335.	5.1	9
20	Selective Borohydride Oxidation Reaction on Nickel Catalyst with Anion and Cation Exchange Ionomer for Highâ€Performance Direct Borohydride Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	8
21	A combined diffuse reflectance infrared Fourier transform spectroscopy–mass spectroscopy–gas chromatography for the <i>operando</i> study of the heterogeneously catalyzed CO2 hydrogenation over transition metal-based catalysts. Review of Scientific Instruments, 2020, 91, 074102.	1.3	0