Brian T Hawkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/822700/publications.pdf

Version: 2024-02-01

45 papers 4,463 citations

257450 24 h-index 302126 39 g-index

50 all docs

50 docs citations

50 times ranked

6017 citing authors

#	Article	IF	Citations
1	The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 2005, 57, 173-185.	16.0	2,225
2	Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 2006, 50, 202-211.	6.3	274
3	Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Research, 2004, 1027, 48-58.	2.2	187
4	Nicotine and Cotinine Modulate Cerebral Microvascular Permeability and Protein Expression of ZO-1 through Nicotinic Acetylcholine Receptors Expressed on Brain Endothelial Cells. Journal of Pharmaceutical Sciences, 2002, 91, 2525-2538.	3.3	149
5	Fluorescence imaging of blood–brain barrier disruption. Journal of Neuroscience Methods, 2006, 151, 262-267.	2.5	126
6	Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15930-15935.	7.1	125
7	Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H738-H743.	3.2	124
8	Interendothelial Claudin-5 Expression Depends on Cerebral Endothelial Cell–Matrix Adhesion by β ₁ -Integrins. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1972-1985.	4.3	121
9	Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening. Scientific Reports, 2018, 8, 2841.	3.3	98
10	Smoking and ischemic stroke: a role for nicotine?. Trends in Pharmacological Sciences, 2002, 23, 78-82.	8.7	95
11	Aryl hydrocarbon receptorâ€mediated upâ€regulation of ATPâ€driven xenobiotic efflux transporters at the bloodâ€brain barrier. FASEB Journal, 2011, 25, 644-652.	0.5	94
12	Rapid, Reversible Modulation of Blood–Brain BarrierP-Glycoprotein Transport Activity by Vascular Endothelial Growth Factor. Journal of Neuroscience, 2010, 30, 1417-1425.	3.6	92
13	An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics, 2015, 9, 061102.	2.4	80
14	Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H212-H219.	3.2	78
15	Decreased blood–brain barrier permeability to fluorescein in streptozotocin-treated rats. Neuroscience Letters, 2007, 411, 1-5.	2.1	71
16	Pathophysiology of the Blood–Brain Barrier: Animal Models and Methods. Current Topics in Developmental Biology, 2007, 80, 277-309.	2.2	71
17	Comparative changes in the blood-brain barrier and cerebral infarction of SHR and WKY rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1881-R1892.	1.8	55
18	Activation of PKC Isoform β _I at the Blood–Brain Barrier Rapidly Decreases P-Glycoprotein Activity and Enhances Drug Delivery to the Brain. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1373-1383.	4.3	49

#	Article	IF	Citations
19	\hat{l}^21 -integrin–matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 641-658.	4.3	49
20	A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater. Water Research, 2018, 144, 553-560.	11.3	38
21	Rapid Loss of Blood–Brain Barrier P-Glycoprotein Activity through Transporter Internalization Demonstrated Using a Novel in Situ Proteolysis Protection Assay. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1593-1597.	4.3	32
22	Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor \hat{l}^21 . Brain Research, 2015, 1608, 167-176.	2.2	30
23	Hemostasis and Alterations of the Central Nervous System. Seminars in Thrombosis and Hemostasis, 2013, 39, 856-875.	2.7	25
24	Disruption of dystroglycan–laminin interactions modulates water uptake by astrocytes. Brain Research, 2013, 1503, 89-96.	2.2	24
25	Field testing of a household-scale onsite blackwater treatment system in South Africa. Science of the Total Environment, 2020, 703, 135469.	8.0	19
26	Field testing of a household-scale onsite blackwater treatment system in Coimbatore, India. Science of the Total Environment, 2020, 713, 136706.	8.0	18
27	Activating PKC-β1 at the bloodâ€"brain barrier reverses induction of P-glycoprotein activity by dioxin and restores drug delivery to the CNS. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1371-1375.	4.3	17
28	Electrochemical disinfection of repeatedly recycled blackwater in a freeâ€standing, additiveâ€free toilet. Water and Environment Journal, 2017, 31, 545-551.	2.2	14
29	Remediation of suspended solids and turbidity by improved settling tank design in a smallâ€scale, freeâ€standing toilet system using recycled blackwater. Water and Environment Journal, 2019, 33, 61-66.	2.2	14
30	Resolving the relative contributions of cistern and pour flushing to toilet water usage: Measurements from urban test sites in India. Science of the Total Environment, 2020, 730, 138957.	8.0	11
31	Laboratory Demonstration and Preliminary Techno-Economic Analysis of an Onsite Wastewater Treatment System. Environmental Science & Echnology, 2020, 54, 16147-16155.	10.0	10
32	Improving energy efficiency of electrochemical blackwater disinfection through sequential reduction of suspended solids and chemical oxygen demand. Gates Open Research, 2018, 2, 50.	1.1	7
33	Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis ofÂreinvented-toilet technologies with respect to ISO 30500. Gates Open Research, 2019, 3, 559.	1.1	7
34	Throwing Out the Thromboemboli. New England Journal of Medicine, 2010, 363, 1282-1284.	27.0	5
35	Modeling Neuroinflammatory Effects After Chemical Exposures in a Scalable, Three-Dimensional Cell Culture System. Applied in Vitro Toxicology, 2016, 2, 223-234.	1.1	5
36	Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis ofÂreinvented-toilet technologies with respect to ISO 30500. Gates Open Research, 2019, 3, 559.	1.1	4

#	Article	IF	CITATIONS
37	Improving energy efficiency of electrochemical blackwater disinfection through sequential reduction of suspended solids and chemical oxygen demand. Gates Open Research, 0, 2, 50.	1.1	3
38	Intracerebral hemorrhage and thrombin-induced alterations in cerebral microvessel matrix. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1732-1747.	4.3	3
39	A hands-free stool sampling system for monitoring intestinal health and disease. Scientific Reports, 2022, 12, .	3.3	3
40	The neurovascular unit and possible influences on cerebral small vessel disease., 2014,, 99-116.		1
41	Development and Field Testing of a Decentralized, Self-Contained Toilet that Converts Human Waste Into Burnable Fuel and Disinfected, Reusable Liquid. Proceedings of the Water Environment Federation, 2016, 2016, 4466-4476.	0.0	1
42	The Role of Blood Brain Barrier Transport in the Enhanced Analgesia of Glycopeptide Opioids. FASEB Journal, 2006, 20, .	0.5	0
43	Ex Vivo Fluorometric Analysis of Efflux Transporters in Rat Choroid Plexus. FASEB Journal, 2006, 20, A1143.	0.5	0
44	Sphingolipids signal rapid loss of Pâ€glycoprotein transport activity at the bloodâ€brain barrier. FASEB Journal, 2012, 26, 862.2.	0.5	0
45	Blackwater Disinfection Using Potentiodynamic Methods and Surface-Modified Electrochemical Packed Bed Electrode Materials. ECS Meeting Abstracts, 2018, , .	0.0	O