
Jong-ho Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8225643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 2016, 7, 12632.	12.8	648
2	Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30, 925-939.	16.8	538
3	Mechanisms Controlling PD-L1 Expression in Cancer. Molecular Cell, 2019, 76, 359-370.	9.7	501
4	Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Molecular Cell, 2018, 71, 606-620.e7.	9.7	491
5	Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 2018, 33, 187-201.e10.	16.8	381
6	Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Research, 2018, 28, 862-864.	12.0	345
7	STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nature Communications, 2018, 9, 1908.	12.8	282
8	Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nature Communications, 2021, 12, 832.	12.8	248
9	IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. Journal of Clinical Investigation, 2019, 129, 3324-3338.	8.2	209
10	Design, Synthesis, and Biological Evaluation of Novel Deguelin-Based Heat Shock Protein 90 (HSP90) Inhibitors Targeting Proliferation and Angiogenesis. Journal of Medicinal Chemistry, 2012, 55, 10863-10884.	6.4	92
11	Targeting Glycosylated PD-1 Induces Potent Antitumor Immunity. Cancer Research, 2020, 80, 2298-2310.	0.9	87
12	Hypoxia-inducible Factor-1α Inhibits Self-renewal of Mouse Embryonic Stem Cells in Vitro via Negative Regulation of the Leukemia Inhibitory Factor-STAT3 Pathway. Journal of Biological Chemistry, 2007, 282, 13672-13679.	3.4	85
13	Arrest Defective 1 Autoacetylation Is a Critical Step in Its Ability to Stimulate Cancer Cell Proliferation. Cancer Research, 2010, 70, 4422-4432.	0.9	60
14	RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Molecular Cancer, 2021, 20, 107.	19.2	60
15	Ninjurin1 Deficiency Attenuates Susceptibility of Experimental Autoimmune Encephalomyelitis in Mice. Journal of Biological Chemistry, 2014, 289, 3328-3338.	3.4	41
16	AKAP12 induces apoptotic cell death in human fibrosarcoma cells by regulating CDKI-cyclin D1 and caspase-3 activity. Cancer Letters, 2007, 254, 111-118.	7.2	35
17	AKAP12 Mediates Barrier Functions of Fibrotic Scars during CNS Repair. PLoS ONE, 2014, 9, e94695.	2.5	31
18	TMEM9â€vâ€ATPase Activates Wnt/βâ€Catenin Signaling Via APC Lysosomal Degradation for Liver Regeneration and Tumorigenesis. Hepatology, 2021, 73, 776-794.	7.3	31

Јонд-но Сна

#	Article	IF	CITATIONS
19	Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury. Nature Communications, 2014, 5, 4952.	12.8	30
20	Ninjurin1 Enhances the Basal Motility and Transendothelial Migration of Immune Cells by Inducing Protrusive Membrane Dynamics. Journal of Biological Chemistry, 2014, 289, 21926-21936.	3.4	24
21	Heme oxygenase metabolites improve astrocytic mitochondrial function via a Ca2+-dependent HIF-1α/ERRα circuit. PLoS ONE, 2018, 13, e0202039.	2.5	23
22	Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells, 2021, 10, 3309.	4.1	23
23	Juxtacrine Signaling Inhibits Antitumor Immunity by Upregulating PD-L1 Expression. Cancer Research, 2018, 78, 3761-3768.	0.9	22
24	Mucin in cancer: a stealth cloak for cancer cells. BMB Reports, 2021, 54, 344-355.	2.4	18
25	New Approaches on Cancer Immunotherapy. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036863.	6.2	17
26	A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity. BMB Reports, 2020, 53, 512-520.	2.4	17
27	Meteorin is upregulated in reactive astrocytes and functions as a negative feedback effector in reactive gliosis. Molecular Medicine Reports, 2015, 12, 1817-1823.	2.4	16
28	Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. Journal of Biological Chemistry, 2022, 298, 101817.	3.4	15
29	PKC-δ inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia <i>in vitro</i> . Experimental and Molecular Medicine, 2010, 42, 294.	7.7	13
30	Nuclear Translocation of hARD1 Contributes to Proper Cell Cycle Progression. PLoS ONE, 2014, 9, e105185.	2.5	13
31	Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Molecular Neurobiology, 2017, 54, 7353-7368.	4.0	12
32	MT4-MMP promotes invadopodia formation and cell motility in FaDu head and neck cancer cells. Biochemical and Biophysical Research Communications, 2020, 522, 1009-1014.	2.1	12
33	Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nature Communications, 2021, 12, 2788.	12.8	11
34	Autoacetylation regulates differentially the roles of ARD1 variants in tumorigenesis. International Journal of Oncology, 2015, 46, 99-106.	3.3	8
35	Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Frontiers in Oncology, 2020, 10, 1657.	2.8	8
36	ATXN7L3B promotes hepatocellular carcinoma stemness and is downregulated by metformin. Biochemical and Biophysical Research Communications, 2021, 573, 1-8.	2.1	5

Јолд-но Сна

#	Article	IF	CITATIONS
37	Emerging roles of PHLPP phosphatases in metabolism. BMB Reports, 2021, 54, 451-457.	2.4	5
38	"Standby" EMT and "immune cell trapping" structure as novel mechanisms for limiting neuronal damage after CNS injury. Neural Regeneration Research, 2014, 9, 2032.	3.0	2
39	Abstract A16: Metformin is a potential nontoxic adjuvant to enhance the efficacy of non-PDL1/PD-1 targeting immune therapies. , 2020, , .		Ο
40	Abstract 6527: Targeting glycosylated PD-1 induces potent anti-tumor immunity. , 2020, , .		0