David F Stowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Subnormothermic Regulated Hepatic Reperfusion on Mitochondrial and Transcriptomic Profiles in a Porcine Model. Annals of Surgery, 2023, 277, e366-e375.	2.1	4
2	Hypothermia Prevents Cardiac Dysfunction during Acute Ischemia Reperfusion by Maintaining Mitochondrial Bioenergetics and by Promoting Hexokinase II Binding to Mitochondria. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	1.9	1
3	Modulation of peroxynitrite produced via mitochondrial nitric oxide synthesis during Ca2+ and succinate-induced oxidative stress in cardiac isolated mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148290.	0.5	7
4	PPARÎ ³ -Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells, 2020, 9, 252.	1.8	10
5	Knockout of VDAC1 in H9c2 Cells Promotes tBHPâ€induced Cell Apoptosis Through Decreased Mitochondrial HK II Binding and Enhanced Glycolytic Stress. FASEB Journal, 2020, 34, 1-1.	0.2	1
6	Total Matrix Ca2+ Modulates Ca2+ Efflux via the Ca2+/H+ Exchanger in Cardiac Mitochondria. Frontiers in Physiology, 2020, 11, 510600.	1.3	12
7	Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress. Cellular Physiology and Biochemistry, 2020, 54, 853-874.	1.1	3
8	Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells, 2019, 8, 1052.	1.8	38
9	Editorial: Genetic Modification of Cardiac Tissue. Frontiers in Cardiovascular Medicine, 2019, 6, 93.	1.1	О
10	Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. Mitochondrion, 2019, 46, 380-392.	1.6	24
11	K + influx triggers slow K + /H + exchange detected by biphasic changes in matrix pH in Guinea pig cardiomyocyte mitochondria. FASEB Journal, 2019, 33, 660.7.	0.2	Ο
12	Cyclosporineâ€A Enhances Mitochondrial Calcium Buffering to Delay mPTP Opening. FASEB Journal, 2019, 33, 660.9.	0.2	1
13	Prevention of mitochondrial pH gradient dissipation: a novel role for cyclosporin A on inhibiting calciumâ€hydrogen exchange activity in cardiac isolated mitochondria. FASEB Journal, 2019, 33, 660.12.	0.2	Ο
14	Slow Ca2+ Efflux by Ca2+/H+ Exchange in Cardiac Mitochondria Is Modulated by Ca2+ Re-uptake via MCU, Extra-Mitochondrial pH, and H+ Pumping by FOF1-ATPase. Frontiers in Physiology, 2018, 9, 1914.	1.3	14
15	Subnormothermic Regulated Hepatic Reperfusion Preserves Mitochondrial Function in Swine Liver Procured after Cardiac Death. FASEB Journal, 2018, 32, lb161.	0.2	Ο
16	Dissociation of Hexokinase II Binding to VDAC Increases State 3 Respiration and Reduces Membrane Potential Repolarization Time in Mitochondria Isolated From Brain and Heart. FASEB Journal, 2018, 32, 618.5.	0.2	0
17	Single-lung ventilation and oxidative stress. Current Opinion in Anaesthesiology, 2017, 30, 42-49.	0.9	16
18	Identity and function of a cardiac mitochondrial small conductance Ca 2+ -activated K + channel splice variant. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 442-458.	0.5	26

#	Article	IF	CITATIONS
19	Endogenous and Agonist-induced Opening of Mitochondrial Big Versus Small Ca2+-sensitive K+ Channels on Cardiac Cell and Mitochondrial Protection. Journal of Cardiovascular Pharmacology, 2017, 70, 314-328.	0.8	15
20	Mg2+ differentially regulates two modes of mitochondrial Ca2+ uptake in isolated cardiac mitochondria: implications for mitochondrial Ca2+ sequestration. Journal of Bioenergetics and Biomembranes, 2016, 48, 175-188.	1.0	26
21	Stretch-induced increase in cardiac contractility is independent of myocyte Ca ²⁺ while block of stretch channels by streptomycin improves contractility after ischemic stunning. Physiological Reports, 2015, 3, e12486.	0.7	4
22	Human heart preservation analyses using convective cooling. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1426-1443.	1.6	1
23	Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III. Frontiers in Physiology, 2015, 6, 58.	1.3	25
24	Reversible Blockade of Complex I or Inhibition of PKCβ Reduces Activation and Mitochondria Translocation of p66Shc to Preserve Cardiac Function after Ischemia. PLoS ONE, 2014, 9, e113534.	1.1	26
25	Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Frontiers in Physiology, 2014, 5, 341.	1.3	28
26	Genetically determined mitochondrial preservation and cardioprotection against myocardial ischemia-reperfusion injury in a consomic rat model. Physiological Genomics, 2014, 46, 169-176.	1.0	6
27	Computational analysis of Ca ²⁺ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca ²⁺ uptake. Journal of Physiology, 2014, 592, 1917-1930.	1.3	22
28	lsoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 354-365.	0.5	30
29	Human heart conjugate cooling simulation: Unsteady thermoâ€fluidâ€stress analysis. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1372-1386.	1.0	2
30	Reactive Oxygen Species (ROS) and Cardiac Ischemia and Reperfusion Injury. , 2014, , 889-949.		2
31	Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release. Journal of Bioenergetics and Biomembranes, 2013, 45, 189-202.	1.0	37
32	Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen speciesgeneration. Free Radical Biology and Medicine, 2013, 56, 193-203.	1.3	25
33	Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake–independent respiration and redox state in cardiac isolated mitochondria. Journal of Bioenergetics and Biomembranes, 2013, 45, 203-218.	1.0	24
34	Protection against cardiac injury by small Ca2+-sensitive K+ channels identified in guinea pig cardiac inner mitochondrial membrane. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 427-442.	1.4	66
35	Safety and Efficacy of Ranolazine for the Treatment of Chronic Angina Pectoris. Clinical Medicine Insights Therapeutics, 2013, 5, CMT.S7824.	0.4	8
36	Differential effects of low pH on Ca 2+ â€induced ROS emission from mitochondrial complexes I and III. FASEB Journal, 2013, 27, .	0.2	0

#	Article	IF	CITATIONS
37	Characterization of Different Modes of Ca 2+ Uptake under Physiological Conditions in Heart Mitochondria. FASEB Journal, 2013, 27, 1209.20.	0.2	0
38	Decreased nitration of mitochondrial complex I by ROS/RNS scavenging during cardiac ischemia reperfusion injury. FASEB Journal, 2013, 27, 1209.13.	0.2	0
39	Attenuating complex I activity decreases p66 shc phosphorylation and translocation to mitochondria during cardiac ischemia reperfusion injury. FASEB Journal, 2013, 27, 1144.2.	0.2	0
40	Ca 2+ â€induced mitochondrial permeability transition pore opening is substrateâ€dependent. FASEB Journal, 2013, 27, 1209.1.	0.2	0
41	Putative small conductance Ca2+â€sensitive K+ channels isoforms and splice variants in mitochondria of guinea pig cardiac ventricular myocytes. FASEB Journal, 2013, 27, 1209.12.	0.2	0
42	Resistance of guinea pig cardiac cytochrome c oxidase (complex IV) to extended ischemic time during global ischemia and reperfusion. FASEB Journal, 2013, 27, lb438.	0.2	0
43	Substrate â€dependent Action of Isoflurane on Electron Transport Chain Complexes. FASEB Journal, 2013, 27, 1209.9.	0.2	0
44	Reduced mitochondrial Ca ²⁺ loading and improved functional recovery after ischemia-reperfusion injury in old vs. young guinea pig hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H855-H863.	1.5	14
45	Adding ROS Quenchers to Cold K ⁺ Cardioplegia Reduces Superoxide Emission During 2-Hour Global Cold Cardiac Ischemia. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 93-101.	1.0	8
46	Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 2049-2059.	0.5	30
47	Enhanced charge-independent mitochondrial free Ca2+ and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 453-465.	0.5	16
48	Damage to mitochondrial complex I during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 419-429.	0.5	71
49	Isoflurane Increases Mitochondrial Free Ca 2+ by Attenuating the Na + /Ca 2+ Exchanger Activity. FASEB Journal, 2012, 26, 888.4.	0.2	0
50	Mitochondrial handling of excess Ca 2+ is substrateâ€dependent with implications on ROS generation. FASEB Journal, 2012, 26, 678.17.	0.2	0
51	Tyrosine nitration of voltage dependent anion channels induced by peroxynitrite alters protein structure and function in vitro. FASEB Journal, 2012, 26, 678.19.	0.2	0
52	Resveratrol or 32°C hypothermia applied during reperfusion after cardiac ischemia reduces mitochondrial translocation of p66shc. FASEB Journal, 2012, 26, 678.18.	0.2	1
53	Identification, localization, and electrophysiologic characterization of small Ca 2+ â€sensitive K + channels in cardiac mitochondria. FASEB Journal, 2012, 26, 695.8.	0.2	0
54	Modeling Dynamic Regulation of Mitochondrial free Ca 2+ : Effects of Ca 2+ Sequestration and Precipitation. FASEB Journal, 2012, 26, 585.4.	0.2	0

#	Article	IF	CITATIONS
55	Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacological Research, 2011, 64, 381-392.	3.1	98
56	Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury. Frontiers in Physiology, 2011, 2, 13.	1.3	132
57	Mitochondrial matrix K ⁺ flux independent of large-conductance Ca ²⁺ -activated K ⁺ channel opening. American Journal of Physiology - Cell Physiology, 2010, 298, C530-C541.	2.1	53
58	Potential Therapeutic Benefits of Strategies Directed to Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 279-347.	2.5	162
59	Ranolazine Preserves the Integrity of Mitochondrial Supercomplexes. Biophysical Journal, 2010, 98, 56a.	0.2	1
60	Mitochondrial Free [Ca2+] Increases during ATP/ADP Antiport and ADP Phosphorylation: Exploration of Mechanisms. Biophysical Journal, 2010, 99, 997-1006.	0.2	30
61	Reduced mitochondrial volume contributes but cannot fully explain the increase in matrix free calcium after addition of ADP. FASEB Journal, 2010, 24, 1048.9.	0.2	0
62	Ranolazine delays Ca 2+ â€induced mitochondrial permeability transition pore opening and membrane potential depolarization in guinea pig heart mitochondria. FASEB Journal, 2010, 24, 601.9.	0.2	0
63	Protection of NADHâ€linked Feâ€S clusters in cardiac mitochondria by ranolazine. FASEB Journal, 2010, 24, 591.13.	0.2	0
64	Characterizing the Cardioprotective Phenotype of Brown Norway Rats: Importance of Optimal Ischemia Duration. FASEB Journal, 2010, 24, .	0.2	1
65	Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function. Antioxidants and Redox Signaling, 2009, 11, 1373-1414.	2.5	409
66	Comparison of cumulative planimetry versus manual dissection to assess experimental infarct size in isolated hearts. Journal of Pharmacological and Toxicological Methods, 2009, 60, 275-280.	0.3	22
67	ADP/ATP Antiport and ADP Phosphorylation Increase Mitochondrial Free Ca2+. Biophysical Journal, 2009, 96, 244a.	0.2	1
68	Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection. Journal of Cardiovascular Pharmacology, 2009, 54, 298-309.	0.8	28
69	Ranolazine, a late sodium current inhibitor, reduces ischemiaâ€induced superoxide emission and improves functional recovery in guinea pig isolated hearts. FASEB Journal, 2009, 23, .	0.2	1
70	Modeling Regulation of Mitochondrial Free Ca 2+ by Metabolite Dependent Ca 2+ Buffering. FASEB Journal, 2009, 23, 994.2.	0.2	0
71	Uncoupler induced graded mitochondrial depolarization and attenuated matrix calcium uptake are enhanced by complex V inhibition indicative of blocked ATP hydrolysis. FASEB Journal, 2009, 23, 508.5.	0.2	0
72	Hypothermia impedes calcium induced mitochondrial permeability transition pore opening in mitochondria harvested after cold ischemia of isolated hearts. FASEB Journal, 2009, 23, 508.4.	0.2	0

#	Article	IF	CITATIONS
73	Mild hypothermia on reperfusion after warm ischemia improves guinea pig isolated heart function. FASEB Journal, 2009, 23, 793.16.	0.2	0
74	Low-flow Perfusion of Guinea Pig Isolated Hearts With 26°C Air-saturated Lifor Solution for 20 Hours Preserves Function and Metabolism. Journal of Heart and Lung Transplantation, 2008, 27, 1008-1015.	0.3	15
75	KATP Channel Openers Have Opposite Effects on Mitochondrial Respiration Under Different Energetic Conditions. Journal of Cardiovascular Pharmacology, 2008, 51, 483-491.	0.8	47
76	Enhanced Na+/H+ Exchange During Ischemia and Reperfusion Impairs Mitochondrial Bioenergetics and Myocardial Function. Journal of Cardiovascular Pharmacology, 2008, 52, 236-244.	0.8	31
77	Differential Increase of Mitochondrial Matrix Volume by Sevoflurane in Isolated Cardiac Mitochondria. Anesthesia and Analgesia, 2008, 106, 1049-1055.	1.1	15
78	Blocking mitochondrial Ca 2+ uniport activity during activated Na + /H + exchange reduces mCa 2+ loading but does little to better protect function on reperfusion. FASEB Journal, 2008, 22, 730.24.	0.2	0
79	Regulation of mitochondrial free Ca2+ by metabolite and pHâ€dependent Ca2+ buffering in the matrix: analysis by a computational model of mitochondrial Ca2+ handling. FASEB Journal, 2008, 22, 756.7.	0.2	0
80	ROS scavenging before 27°C ischemia protects hearts and reduces mitochondrial ROS, Ca2+ overload, and changes in redox state. American Journal of Physiology - Cell Physiology, 2007, 292, C2021-C2031.	2.1	37
81	Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology - Cell Physiology, 2007, 292, C137-C147.	2.1	238
82	Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. American Journal of Physiology - Cell Physiology, 2007, 292, C148-C156.	2.1	121
83	Isoflurane Activates Human Cardiac Mitochondrial Adenosine Triphosphate-Sensitive K+ Channels Reconstituted in Lipid Bilayers. Anesthesia and Analgesia, 2007, 105, 926-932.	1.1	29
84	Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1400-H1407.	1.5	91
85	Ten-hour preservation of guinea pig isolated hearts perfused at low flow with air-saturated Lifor solution at 26°C: comparison to ViaSpan solution. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H895-H901.	1.5	16
86	Ten hour preservation of guinea pig isolated hearts perfused at low flow with airâ€saturated Lifor® solution at room temperature. FASEB Journal, 2007, 21, A1255.	0.2	0
87	Cardiac mitochondrial Ca ²⁺ â€dependent big K ⁺ channels are open during early reperfusion. FASEB Journal, 2007, 21, A1224.	0.2	2
88	Modeling the roles of Ca uniporter, Na/Ca exchanger and Na/H exchanger in regulating Ca, Na and pH flux in cardiac mitochondria using in vitro spectrofluorometry. FASEB Journal, 2007, 21, A1352.	0.2	1
89	Improved mitochondrial Ca ²⁺ handling and functional recovery after ischemia reperfusion injury in hearts from old vs. young guinea pigs. FASEB Journal, 2007, 21, A1223.	0.2	0
90	Quantitative Analysis of Mitochondrial Membrane Potential Measurements with JCâ€1. FASEB Journal, 2007, 21, A1351.	0.2	2

#	Article	IF	CITATIONS
91	Na + /H + exchange inhibition protects against ischemic injury by preserving mitochondrial redox state, and by reducing mitochondrial Ca 2+ overload and ROS production. FASEB Journal, 2007, 21, A1221.	0.2	0
92	β-Blockade Abolishes Anesthetic Preconditioning: Impact on Clinical Applicability. Anesthesiology, 2007, 106, 1061-1062.	1.3	0
93	Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts. BioMedical Engineering OnLine, 2006, 5, 16.	1.3	3
94	Ischemia-reperfusion injury changes the dynamics of Ca2+-contraction coupling due to inotropic drugs in isolated hearts. Journal of Applied Physiology, 2006, 100, 940-950.	1.2	11
95	Anesthetic Preconditioning Enhances Ca2+Handling and Mechanical and Metabolic Function Elicited by Na+–Ca2+Exchange Inhibition in Isolated Hearts. Anesthesiology, 2006, 105, 541-549.	1.3	23
96	A Comparison of Three Phosphodiesterase Type III Inhibitors on Mechanical and Metabolic Function in Guinea Pig Isolated Hearts. Anesthesia and Analgesia, 2006, 102, 1646-1652.	1.1	22
97	Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H434-H440.	1.5	125
98	Characterization of human cardiac mitochondrial ATP-sensitive potassium channel and its regulation by phorbol ester in vitro. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1770-H1776.	1.5	34
99	Cardiovascular pharmacology. , 2006, , 499-509.		0
100	Cardiac protection by volatile anesthetics with Na + /Ca 2+ exchanger inhibitors in isolated guinea pig hearts. FASEB Journal, 2006, 20, A319.	0.2	0
101	Transfer entropy is a better indicator of changes in AV coupling than standard measures of AV conduction. FASEB Journal, 2006, 20, A321.	0.2	1
102	Amobarbital, high K + and lidocaine protect hearts against ischemia reperfusion injury by differential changes in mitochondrial bioenergetics. FASEB Journal, 2006, 20, A319.	0.2	2
103	Acidotic perfusion protects against ischemic injury by improving mitochondrial redox balance. FASEB Journal, 2006, 20, A742.	0.2	0
104	Mitochondrial Ca ²⁺ â€Đependent Big K ⁺ Channels in Postconditioning of Guinea Pig Isolated Hearts. FASEB Journal, 2006, 20, A1154.	0.2	0
105	Modulatory effects of endogenous nitric oxide on the bioenergetics of BK _{Ca} channels in guinea pig isolated cardiac mitochondria. FASEB Journal, 2006, 20, A893.	0.2	0
106	Improved return of left ventricular function and myoplasmic [Ca ²⁺] after ischemia reperfusion injury in hearts from old vs. young guinea pigs. FASEB Journal, 2006, 20, A384.	0.2	0
107	Activation of Mitochondrial Ca ²⁺ Sensitive Potassium Channels Enhances Mitochondrial Reactive Oxygen Species Production. FASEB Journal, 2006, 20, A315.	0.2	1
108	Increasing Heart Size and Age Attenuate Anesthetic Preconditioning in Guinea Pig Isolated Hearts. Anesthesia and Analgesia, 2005, 101, 1572-1576.	1.1	31

#	Article	IF	CITATIONS
109	Improved Mitochondrial Bioenergetics by Anesthetic Preconditioning During and After 2 Hours of 27ŰC Ischemia in Isolated Hearts. Journal of Cardiovascular Pharmacology, 2005, 46, 280-287.	0.8	16
110	Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2620-H2627.	1.5	31
111	Cardioprotection with Volatile Anesthetics: Mechanisms and Clinical Implications. Anesthesia and Analgesia, 2005, 100, 1584-1593.	1.1	195
112	Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice. Anesthesia and Analgesia, 2005, 101, 1275-1287.	1.1	170
113	Anesthetic Preconditioning: The Role of Free Radicals in Sevoflurane-Induced Attenuation of Mitochondrial Electron Transport in Guinea Pig Isolated Hearts. Anesthesia and Analgesia, 2005, 100, 46-53.	1.1	67
114	Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1289-H1299.	1.5	74
115	Negative inotropic drugs alter indexes of cytosolic [Ca2+]-left ventricular pressure relationships after ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H667-H680.	1.5	5
116	Reactive Oxygen Species and Cardiac Preconditioning: Many Questions Remain. Cardiovascular Drugs and Therapy, 2004, 18, 87-90.	1.3	6
117	Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 °C ischemia in intact hearts. Cardiovascular Research, 2004, 61, 580-590.	1.8	108
118	Cardiac Preconditioning by Volatile Anesthetic Agents: A Defining Role for Altered Mitochondrial Bioenergetics. Antioxidants and Redox Signaling, 2004, 6, 439-448.	2.5	73
119	Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside?. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1603-H1607.	1.5	89
120	Attenuation of Mitochondrial Respiration by Sevoflurane in Isolated Cardiac Mitochondria Is Mediated in Part by Reactive Oxygen Species. Anesthesiology, 2004, 100, 498-505.	1.3	57
121	Dual Exposure to Sevoflurane Improves Anesthetic Preconditioning in Intact Hearts. Anesthesiology, 2004, 100, 569-574.	1.3	47
122	Cardiotonic drugs differentially alter cytosolic [Ca2+] to left ventricular relationships before and after ischemia in isolated guinea pig hearts. Cardiovascular Research, 2003, 59, 912-925.	1.8	13
123	Ischemic Preconditioning: Triggering Role of Nitric Oxide-Derived Oxidants in Isolated Hearts. Journal of Cardiovascular Pharmacology, 2003, 42, 593-600.	0.8	22
124	Effect of low [CaCl2] and high [MgCl2] cardioplegia and moderate hypothermic ischemia on myoplasmic [Ca2+] and cardiac function in intact hearts. European Journal of Cardio-thoracic Surgery, 2003, 24, 974-985.	0.6	4
125	Anesthetic Preconditioning. Anesthesiology, 2003, 99, 385-391.	1.3	35
126	Na+/H+ Exchange Inhibition with Cardioplegia Reduces Cytosolic [Ca2+] and Myocardial Damage after Cold Ischemia. Journal of Cardiovascular Pharmacology, 2003, 41, 686-698.	0.8	22

#	Article	IF	CITATIONS
127	Anesthetic Preconditioning Improves Adenosine Triphosphate Synthesis and Reduces Reactive Oxygen Species Formation in Mitochondria after Ischemia by a Redox Dependent Mechanism. Anesthesiology, 2003, 98, 1155-1163.	1.3	77
128	Reactive Oxygen Species Precede the ε Isoform of Protein Kinase C in the Anesthetic Preconditioning Signaling Cascade. Anesthesiology, 2003, 99, 421-428.	1.3	109
129	How Inotropic Drugs Alter Dynamic and Static Indices of Cyclic Myoplasmic [Ca2+] to Contractility Relationships in Intact Hearts. Journal of Cardiovascular Pharmacology, 2003, 42, 539-553.	0.8	16
130	Preconditioning with Sevoflurane Reduces Changes in Nicotinamide Adenine Dinucleotide during Ischemia–Reperfusion in Isolated Hearts. Anesthesiology, 2003, 98, 387-395.	1.3	83
131	Sevoflurane Exposure Generates Superoxide but Leads to Decreased Superoxide During Ischemia and Reperfusion in Isolated Hearts. Anesthesia and Analgesia, 2003, 96, 949-955.	1.1	108
132	lschemic preconditioning alters real-time measure of O ₂ radicals in intact hearts with ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H566-H574.	1.5	226
133	Cross-bridge kinetics modeled from myoplasmic [Ca2+] and LV pressure at 17°C and after 37°C and 17°C ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1217-H1229.	1.5	14
134	Sevoflurane Preconditioning before Moderate Hypothermic Ischemia Protects against Cytosolic [Ca2+] Loading and Myocardial Damage in Part via Mitochondrial KATPChannels. Anesthesiology, 2002, 97, 912-920.	1.3	25
135	Differences in Cardiotoxicity of Bupivacaine and Ropivacaine Are the Result of Physicochemical and Stereoselective Properties. Anesthesiology, 2002, 96, 1427-1434.	1.3	134
136	Anesthetic Preconditioning Attenuates Mitochondrial Ca2+ Overload During Ischemia in Guinea Pig Intact Hearts: Reversal by 5-Hydroxydecanoic Acid. Anesthesia and Analgesia, 2002, 95, 1540-1546.	1.1	88
137	Sevoflurane before or after Ischemia Improves Contractile and Metabolic Function while Reducing Myoplasmic Ca2+Loading in Intact Hearts. Anesthesiology, 2002, 96, 125-133.	1.3	71
138	Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H44-H52.	1.5	115
139	Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H53-H60.	1.5	88
140	Inhibition of Na+/H+ isoform-1 exchange protects hearts perfused after 6-hour cardioplegic cold storage. Journal of Heart and Lung Transplantation, 2002, 21, 374-382.	0.3	18
141	Cardiac preconditioning with 4-h, 17°C ischemia reduces [Ca2+]i load and damage in part via KATP channel opening. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1961-H1969.	1.5	21
142	Ischemic and anesthetic preconditioning reduces cytosolic [Ca ²⁺] and improves Ca ²⁺ responses in intact hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1508-H1523.	1.5	90
143	Blocking Na ⁺ /H ⁺ exchange reduces [Na ⁺] _i and [Ca ²⁺] _i load after ischemia and improves function in intact hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2398-H2409.	1.5	75
144	Changes in [Na ⁺] _i , compartmental [Ca ²⁺], and NADH with dysfunction after global ischemia in intact hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H280-H293.	1.5	82

#	Article	IF	CITATIONS
145	Reduced Cytosolic Ca ²⁺ Loading and Improved Cardiac Function After Cardioplegic Cold Storage of Guinea Pig Isolated Hearts. Circulation, 2000, 102, 1172-1177.	1.6	47
146	Enhanced Contractile Responsiveness to Cytosolic Ca2+by Delta-2 Opioid Agonist Deltorphin in Intact Guinea Pig Hearts. Journal of Molecular and Cellular Cardiology, 2000, 32, 1647-1659.	0.9	16
147	Phosphodiesterase Type 5 Inhibition Enhances Vasorelaxation Caused by Nitroprusside in Guinea Pig Intact Heart and Isolated Aorta. Journal of Cardiovascular Pharmacology, 2000, 36, 162-168.	0.8	1
148	Modulation of myocardial function and [Ca2+] sensitivity by moderate hypothermia in guinea pig isolated hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2321-H2332.	1.5	45
149	Understanding the temporal relationship of ATP loss, calcium loading, and rigor contracture during anoxia, and hypercontracture after anoxia in cardiac myocytes. Cardiovascular Research, 1999, 43, 285-287.	1.8	3
150	Reversal of Hypothermia-Induced Action Potential Lengthening by the KATP Channel Agonist Bimakalim in Isolated Guinea Pig Ventricular Muscle. General Pharmacology, 1998, 31, 125-131.	0.7	22
151	Prior Preconditioning by Ischemia or Sevoflurane Improves Cardiac Work per Oxygen Use in Isolated Guinea Pig Hearts After Global Ischemia. Advances in Experimental Medicine and Biology, 1998, 454, 533-542.	0.8	14
152	Differential Effects of Arginine Vasopressin on Isolated Guinea Pig Heart Function During Perfusion at Constant Flow and Constant Pressure. Journal of Cardiovascular Pharmacology, 1997, 29, 1-7.	0.8	30
153	Reversal of Endothelin-Induced Vasoconstriction by Endothelium-Dependent and -Independent Vasodilators in Isolated Hearts and Vascular Rings. Journal of Cardiovascular Pharmacology, 1997, 29, 747-754.	0.8	11
154	Effects of l -Arginine and N ω -Nitro- l -Arginine Methyl Ester on Cardiac Perfusion and Function After 1-Day Cold Preservation of Isolated Hearts. Circulation, 1997, 95, 1623-1634.	1.6	9
155	Neural and endothelial control of the peripheral circulation—Implications for anesthesia: Part I, neural control of the peripheral vasculature. Journal of Cardiothoracic and Vascular Anesthesia, 1996, 10, 147-158.	0.6	16
156	Neural and endothelial control of the peripheral circulation—Implications for anesthesia: Part II, endothelium-mediated effects in the normal and diseased circulation. Journal of Cardiothoracic and Vascular Anesthesia, 1996, 10, 159-171.	0.6	18
157	Improvement in functional recovery of the isolated guinea pig heart after hyperkalemic reperfusion with adenosine. Journal of Thoracic and Cardiovascular Surgery, 1996, 111, 74-84.	0.4	3
158	Ketamine Has Stereospecific Effects in the Isolated Perfused Guinea Pig Heart. Anesthesiology, 1995, 82, 1426-1437	1.3	60
159	Direct Effects of Halothane and Isoflurane in Infant Rabbit Hearts with Right Ventricular Hypertrophy Secondary to Chronic Hypoxemia. Anesthesia and Analgesia, 1995, 80, 1122-1128.	1.1	7
160	One-day Hypothermic Preservation of Isolated Hearts with Halothane Improves Cardiac Function Better than Low Calcium. Anesthesiology, 1995, 83, 1065-1077.	1.3	17
161	The Comparative Effects of Equimolar Sevoflurane and Isoflurane in Isolated Hearts. Anesthesia and Analgesia, 1995, 81, 1026-1032.	1.1	21
162	Coronary Flow Response to Vasodilators in Isolated Hearts Cold Perfused for One Day with Butanedione Monoxime. Endothelium: Journal of Endothelial Cell Research, 1994, 2, 87-98.	1.7	7

#	Article	IF	CITATIONS
163	ExcitationContraction Uncoupling and Vasodilators for Long-Term Cold Preservation of Isolated Hearts. Advances in Pharmacology, 1994, 31, 39-61.	1.2	4
164	Potassium Channel Openers Attenuate Atrioventricular Block by Bupivacaine in Isolated Hearts. Anesthesia and Analgesia, 1993, 76, 1259-1265.	1.1	15
165	Reperfusion with Adenosine and Nitroprusside Improves Preservation of Isolated Guinea Pig Hearts After 22 Hours of Cold Perfusion with 2,3 Butanedione Monoxime. Journal of Cardiovascular Pharmacology, 1993, 21, 578-586.	0.8	17
166	Halothane Reduces Release of Adenosine, Inosine, and Lactate with Ischemia and Reperfusion in Isolated Hearts. Anesthesia and Analgesia, 1993, 76, 54???62.	1.1	40
167	Effects of 2,3-butanedione monoxime in isolated hearts: Protection during reperfusion after global ischemia. Journal of Thoracic and Cardiovascular Surgery, 1993, 105, 532-540.	0.4	23
168	Halothane Reduces Dysrhythmias and Improves Contractile Function After Global Hypoperfusion in Isolated Hearts. Anesthesia and Analgesia, 1992, 74, 384???394.	1.1	36
169	Attenuation of hemodynamic responses to rapid sequence induction and intubation in healthy patients with a single bolus of esmolol. Journal of Clinical Anesthesia, 1990, 2, 243-252.	0.7	57
170	Partial attenuation of hemodynamic responses to rapid sequence induction and intubation with labetalol. Journal of Clinical Anesthesia, 1989, 1, 444-451.	0.7	20
171	Cardiac cell action potential duration is dependent upon induced changes in free Ca2+ activity during pH changes in vitro. Journal of Electrocardiology, 1986, 19, 143-154.	0.4	3
172	Evaluation of the heart rate response to the Valsalva maneuver. American Heart Journal, 1978, 95, 707-715.	1.2	34