
Stefan Bittner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224445/publications.pdf Version: 2024-02-01

STEEAN RITTNED

#	Article	IF	CITATIONS
1	Absolute serum neurofilament light chain levels and its early kinetics predict brain injury after out-of-hospital cardiac arrest. Journal of Neurology, 2022, 269, 1530-1537.	3.6	7
2	K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Research, 2022, 32, 72-88.	12.0	14
3	Impact of Dietary Intervention on Serum Neurofilament Light Chain in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	18
4	Mini-Review: Two Brothers in Crime – The Interplay of TRESK and TREK in Human Diseases. Neuroscience Letters, 2022, 769, 136376.	2.1	4
5	Subcortical Volumes as Early Predictors of Fatigue in Multiple Sclerosis. Annals of Neurology, 2022, 91, 192-202.	5.3	17
6	Alemtuzumab-induced immune phenotype and repertoire changes: implications for secondary autoimmunity. Brain, 2022, 145, 1711-1725.	7.6	23
7	Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Science Translational Medicine, 2022, 14, eabk0135.	12.4	17
8	Brain-derived neurotrophic factor and neurofilament light chain in cerebrospinal fluid are inversely correlated with cognition in Multiple Sclerosis at the time of diagnosis. Multiple Sclerosis and Related Disorders, 2022, 63, 103822.	2.0	7
9	Interleukin-4 receptor signaling modulates neuronal network activity. Journal of Experimental Medicine, 2022, 219, .	8.5	11
10	Altered grey matter integrity and network vulnerability relate to epilepsy occurrence in patients with multiple sclerosis. European Journal of Neurology, 2022, 29, 2309-2320.	3.3	3
11	Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Multiple Sclerosis and Related Disorders, 2022, 63, 103927.	2.0	10
12	Network alterations underlying anxiety symptoms in early multiple sclerosis. Journal of Neuroinflammation, 2022, 19, .	7.2	4
13	Progression in multiple sclerosis – a long-term problem. Current Opinion in Neurology, 2022, 35, 293-298.	3.6	4
14	T cell–neuron interaction in inflammatory and progressive multiple sclerosis biology. Current Opinion in Neurobiology, 2022, 75, 102588.	4.2	7
15	Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Communications, 2022, 4, .	3.3	16
16	Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drugâ€resistant epilepsy. Epilepsia, 2021, 62, 176-189.	5.1	23
17	A role for TASK2 channels in the human immunological synapse. European Journal of Immunology, 2021, 51, 342-353.	2.9	3
18	Implications of extreme serum neurofilament light chain levels for the management of patients with relapsing multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110019.	3.5	2

#	Article	IF	CITATIONS
19	Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110396.	3.5	86
20	Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110034.	3.5	5
21	Translational Value of CSF and Blood Markers of Autoimmunity and Neurodegeneration. Neuromethods, 2021, , 77-86.	0.3	0
22	Cross-reactivity of a pathogenic autoantibody to a tumor antigen in GABA _A receptor encephalitis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
23	Neurofilament light chain levels reflect outcome in a patient with glutamic acid decarboxylase 65 antibody–positive autoimmune encephalitis under immune checkpoint inhibitor therapy. European Journal of Neurology, 2021, 28, 1086-1089.	3.3	7
24	Exercise Diminishes Plasma Neurofilament Light Chain and Reroutes the Kynurenine Pathway in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	28
25	The potential of serum neurofilament as biomarker for multiple sclerosis. Brain, 2021, 144, 2954-2963.	7.6	98
26	Ocrelizumab Extended Interval Dosing in Multiple Sclerosis in Times of COVID-19. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	65
27	Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biological Chemistry, 2021, 402, 1519-1530.	2.5	6
28	Multiple sclerosis therapy consensus group (MSTCG): answers to the discussion questions. Neurological Research and Practice, 2021, 3, 44.	2.0	9
29	Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
30	NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study. EBioMedicine, 2021, 72, 103590.	6.1	24
31	Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity. Brain, 2021, 144, 3126-3141.	7.6	14
32	Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110355.	3.5	20
33	Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
34	Association of serum neurofilament light chain levels and neuropsychiatric manifestations in systemic lupus erythematosus. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110514.	3.5	8
35	Linking Microstructural Integrity and Motor Cortex Excitability in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 748357.	4.8	4
36	Evaluation of Age-Dependent Immune Signatures in Patients With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	24

#	Article	IF	CITATIONS
37	A lymphocyte-glia connection sets the pace for smoldering inflammation. Cell, 2021, 184, 5696-5698.	28.9	4
38	Response by Uphaus et al to Letter Regarding Article, "NfL (Neurofilament Light Chain) Levels as a Predictive Marker for Long-Term Outcome After Ischemic Stroke― Stroke, 2020, 51, e31.	2.0	1
39	Intracellular fluoride influences TASK mediated currents in human T cells. Journal of Immunological Methods, 2020, 487, 112875.	1.4	2
40	The frequency of follicular T helper cells differs in acute and chronic neuroinflammation. Scientific Reports, 2020, 10, 20485.	3.3	4
41	Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy. Journal of Neuroinflammation, 2020, 17, 357.	7.2	30
42	CNS-localized myeloid cells capture living invading T cells during neuroinflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	18
43	Supplementary medication in multiple sclerosis: Real-world experience and potential interference with neurofilament light chain measurement. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732093631.	1.0	5
44	Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 681-686.	1.9	66
45	Clinical implications of serum neurofilament in newly diagnosed MS patients: A longitudinal multicentre cohort study. EBioMedicine, 2020, 56, 102807.	6.1	67
46	MOG encephalomyelitis: distinct clinical, MRI and CSF features in patients with longitudinal extensive transverse myelitis as first clinical presentation. Journal of Neurology, 2020, 267, 1632-1642.	3.6	24
47	Continuous reorganization of cortical information flow in multiple sclerosis: A longitudinal fMRI effective connectivity study. Scientific Reports, 2020, 10, 806.	3.3	17
48	Association of intrathecal pleocytosis and IgG synthesis with axonal damage in early MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e679.	6.0	19
49	Ocrelizumab initiation in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	26
50	Targeting CD52 does not affect murine neuron and microglia function. European Journal of Pharmacology, 2020, 871, 172923.	3.5	6
51	β1-Integrin– and KV1.3 channel–dependent signaling stimulates glutamate release from Th17 cells. Journal of Clinical Investigation, 2020, 130, 715-732.	8.2	32
52	Selective Brain Network and Cellular Responses Upon Dimethyl Fumarate Immunomodulation in Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 1779.	4.8	5
53	NfL (Neurofilament Light Chain) Levels as a Predictive Marker for Long-Term Outcome After Ischemic Stroke. Stroke, 2019, 50, 3077-3084.	2.0	92
54	Neuronal ICAM-5 Plays a Neuroprotective Role in Progressive Neurodegeneration. Frontiers in Neurology, 2019, 10, 205.	2.4	8

#	Article	IF	CITATIONS
55	Intrathecal B-cell accumulation and axonal damage distinguish MRI-based benign from aggressive onset in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e595.	6.0	15
56	IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications, 2019, 10, 5722.	12.8	68
57	Increased cerebrospinal fluid albumin and immunoglobulin A fractions forecast cortical atrophy and longitudinal functional deterioration in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 338-343.	3.0	15
58	Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 678-686.	3.0	148
59	Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Science Translational Medicine, 2018, 10, .	12.4	49
60	Studying the blood–brain barrier will provide new insights into neurodegeneration – Commentary. Multiple Sclerosis Journal, 2018, 24, 1026-1028.	3.0	1
61	Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. Multiple Sclerosis Journal, 2018, 24, 632-641.	3.0	57
62	Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis. Neuroscience Research, 2018, 131, 1-9.	1.9	16
63	Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis. NeuroSignals, 2018, 26, 77-93.	0.9	22
64	Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nature Neuroscience, 2018, 21, 1392-1403.	14.8	64
65	GFAPα IgG-associated encephalitis upon daclizumab treatment of MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e481.	6.0	41
66	Monitoring B-cell repopulation after depletion therapy in neurologic patients. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e463.	6.0	65
67	AAN unveils new guidelines for MS disease-modifying therapy. Nature Reviews Neurology, 2018, 14, 384-386.	10.1	7
68	Recombinant tandem of pore-domains in a Weakly Inward rectifying K+ channel 2 (TWIK2) forms active lysosomal channels. Scientific Reports, 2017, 7, 649.	3.3	22
69	Disease reactivation after switching from natalizumab to daclizumab. Journal of Neurology, 2017, 264, 2491-2494.	3.6	4
70	Increase of Substance P Concentration in Saliva after Pharyngeal Electrical Stimulation in Severely Dysphagic Stroke Patients – an Indicator of Decannulation Success?. NeuroSignals, 2017, 25, 74-87.	0.9	25
71	14â€3â€3 Proteins regulate K _{2P} 5.1 surface expression on T lymphocytes. Traffic, 2017, 18, 29-43.	2.7	17
72	Targeting B cells in relapsing–remitting multiple sclerosis: from pathophysiology to optimal clinical management. Therapeutic Advances in Neurological Disorders, 2017, 10, 51-66.	3.5	62

#	Article	IF	CITATIONS
73	The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain, Behavior, and Immunity, 2017, 59, 103-117.	4.1	25
74	The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 1990.	4.1	28
75	A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 406.	4.8	56
76	The Inflammatory Role of Platelets: Translational Insights from Experimental Studies of Autoimmune Disorders. International Journal of Molecular Sciences, 2016, 17, 1723.	4.1	25
77	Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nature Communications, 2016, 7, 11626.	12.8	105
78	ALAIN01—Alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurology, 2016, 16, 34.	1.8	13
79	General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. Journal of Neuroimmunology, 2016, 297, 117-126.	2.3	21
80	Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathologica, 2016, 132, 703-720.	7.7	17
81	The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2016, 311, C583-C595.	4.6	20
82	Human T cells in silico: Modelling their electrophysiological behaviour in health and disease. Journal of Theoretical Biology, 2016, 404, 236-250.	1.7	9
83	Neuroimmunotherapies Targeting T Cells: From Pathophysiology to Therapeutic Applications. Neurotherapeutics, 2016, 13, 4-19.	4.4	29
84	Evidence for early, non-lesional cerebellar damage in patients with multiple sclerosis: DTI measures correlate with disability, atrophy, and disease duration. Multiple Sclerosis Journal, 2016, 22, 73-84.	3.0	43
85	An Ex vivo Model of an Oligodendrocyte-directed T-Cell Attack in Acute Brain Slices. Journal of Visualized Experiments, 2015, , .	0.3	1
86	The twoâ€pore domain K ₂ P channel TASK2 drives human NKâ€cell proliferation and cytolytic function. European Journal of Immunology, 2015, 45, 2602-2614.	2.9	12
87	TASK, TREK & Co.: Eine wandelbare Kalium-Kanalfamilie für diverse Aufgaben im Gehirn. E-Neuroforum, 2015, 21, .	0.1	0
88	TASK, TREK & Co.: a mutable potassium channel family for diverse tasks in the brain. E-Neuroforum, 2015, 21, .	0.1	0
89	Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling. International Journal of Molecular Sciences, 2015, 16, 21215-21236.	4.1	23
90	Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. International Journal of Molecular Sciences, 2015, 16, 16414-16439.	4.1	167

#	Article	IF	CITATIONS
91	Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms. International Journal of Molecular Sciences, 2015, 16, 16880-16896.	4.1	4
92	Fingolimod (FTY720-P) Does Not Stabilize the Blood–Brain Barrier under Inflammatory Conditions in an in Vitro Model. International Journal of Molecular Sciences, 2015, 16, 29454-29466.	4.1	10
93	An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities. Frontiers in Molecular Neuroscience, 2015, 8, 63.	2.9	10
94	Long-term efficacy of alemtuzumab in polymyositis. Rheumatology, 2015, 54, 560-562.	1.9	14
95	The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration. Pflugers Archiv European Journal of Physiology, 2015, 467, 973-987.	2.8	12
96	The CNS under pathophysiologic attack—examining the role of K2P channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 959-972.	2.8	23
97	TASK, TREK & Co.: a mutable potassium channel family for diverse tasks in the brain. E-Neuroforum, 2015, 6, 29-37.	0.1	1
98	Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Molecular Psychiatry, 2015, 20, 880-888.	7.9	65
99	The NKG2D - IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies. Oncotarget, 2015, 6, 43230-43243.	1.8	17
100	Blood-brain barrier modeling: challenges and perspectives. Neural Regeneration Research, 2015, 10, 889.	3.0	34
101	Human CD4 ⁺ HLAâ€G ⁺ regulatory T cells are potent suppressors of graftâ€versusâ€host disease <i>in vivo</i> . FASEB Journal, 2014, 28, 3435-3445.	0.5	51
102	Transient Receptor Potential Melastatin Subfamily Member 2 Cation Channel Regulates Detrimental Immune Cell Invasion in Ischemic Stroke. Stroke, 2014, 45, 3395-3402.	2.0	85
103	A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 1559-1570.	2.8	22
104	TREK-King the Blood–Brain-Barrier. Journal of NeuroImmune Pharmacology, 2014, 9, 293-301.	4.1	41
105	Phospholipase D1 mediates lymphocyte adhesion and migration in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2014, 44, 2295-2305.	2.9	28
106	Effects of Glatiramer Acetate in a Spontaneous Model of Autoimmune Neuroinflammation. American Journal of Pathology, 2014, 184, 2056-2065.	3.8	8
107	Blocking of α4 Integrin Does Not Protect From Acute Ischemic Stroke in Mice. Stroke, 2014, 45, 1799-1806.	2.0	78
108	Myelin Oligodendrocyte Glycoprotein (MOG ₃₅₋₅₅) Induced Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice. Journal of Visualized Experiments, 2014, , .	0.3	110

#	Article	IF	CITATIONS
109	Isolation of Primary Murine Brain Microvascular Endothelial Cells. Journal of Visualized Experiments, 2014, , e52204.	0.3	72
110	Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter. Journal of Neuroinflammation, 2013, 10, 121.	7.2	19
111	Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice?. Experimental & Translational Stroke Medicine, 2013, 5, 16.	3.2	9
112	Evans syndrome associated with sterile inflammation of the central nervous system: a case report. Journal of Medical Case Reports, 2013, 7, 262.	0.8	4
113	Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nature Medicine, 2013, 19, 1161-1165.	30.7	136
114	4-Aminopyridine ameliorates mobility but not disease course in an animal model of multiple sclerosis. Experimental Neurology, 2013, 248, 62-71.	4.1	22
115	Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood, 2013, 121, 679-691.	1.4	300
116	Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 699-707.	2.6	23
117	Targeting ion channels for the treatment of autoimmune neuroinflammation. Therapeutic Advances in Neurological Disorders, 2013, 6, 322-336.	3.5	25
118	Protein kinase Cβ as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14735-14740.	7.1	43
119	CD4+NKG2D+ T Cells Exhibit Enhanced Migratory and Encephalitogenic Properties in Neuroinflammation. PLoS ONE, 2013, 8, e81455.	2.5	28
120	IL-17 Silencing Does Not Protect Nonobese Diabetic Mice from Autoimmune Diabetes. Journal of Immunology, 2012, 188, 216-221.	0.8	54
121	The TASK1 channel inhibitor A293 shows efficacy in a mouse model of multiple sclerosis. Experimental Neurology, 2012, 238, 149-155.	4.1	37
122	CD4+ CD25+ FoxP3+ regulatory T cells suppress cytotoxicity of CD8+ effector T cells: implications for their capacity to limit inflammatory central nervous system damage at the parenchymal level. Journal of Neuroinflammation, 2012, 9, 41.	7.2	19
123	Expression of K2P5.1 potassium channels on CD4+T lymphocytes correlates with disease activity in rheumatoid arthritis patients. Arthritis Research and Therapy, 2011, 13, R21.	3.5	25
124	Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2036-2044.	2.6	39
125	Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. Journal of Autoimmunity, 2011, 36, 106-114.	6.5	77
126	Active immunization with proteolipid protein (190-209) induces ascending paralysing experimental autoimmune encephalomyelitis in C3H/HeJ mice. Journal of Immunological Methods, 2011, 367, 27-32.	1.4	4

#	Article	IF	CITATIONS
127	Ion channels in autoimmune neurodegeneration. FEBS Letters, 2011, 585, 3836-3842.	2.8	27
128	Natalizumab restores evoked potential abnormalities in patients with relapsing–remitting multiple sclerosis Journal, 2011, 17, 198-203.	3.0	27
129	Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyteâ€directed CD8 ⁺ T cell attack. Glia, 2010, 58, 469-480.	4.9	27
130	Upregulation of K _{2P} 5.1 potassium channels in multiple sclerosis. Annals of Neurology, 2010, 68, 58-69.	5.3	60
131	Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9). Experimental & Translational Stroke Medicine, 2010, 2, 14.	3.2	19
132	From the Background to the Spotlight: TASK Channels in Pathological Conditions. Brain Pathology, 2010, 20, 999-1009.	4.1	67
133	Stromal Interaction Molecules 1 and 2 Are Key Regulators of Autoreactive T Cell Activation in Murine Autoimmune Central Nervous System Inflammation. Journal of Immunology, 2010, 184, 1536-1542.	0.8	96
134	Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain, 2010, 133, 1067-1081.	7.6	73
135	Glatiramer Acetate Attenuates Pro-Inflammatory T Cell Responses but Does Not Directly Protect Neurons from Inflammatory Cell Death. American Journal of Pathology, 2010, 177, 3051-3060.	3.8	10
136	Therapeutic Approaches to Multiple Sclerosis. BioDrugs, 2010, 24, 249-274.	4.6	22
137	Therapeutic Approaches to Multiple Sclerosis. BioDrugs, 2010, 24, 317-330.	4.6	24
138	Cytotoxic CD8 ⁺ T Cell–Neuron Interactions: Perforin-Dependent Electrical Silencing Precedes But Is Not Causally Linked to Neuronal Cell Death. Journal of Neuroscience, 2009, 29, 15397-15409.	3.6	78
139	TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain, 2009, 132, 2501-2516.	7.6	88
140	The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiology of Disease, 2009, 33, 1-11.	4.4	51
141	Comment on "Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse― Immunology Letters, 2009, 125, 156-157.	2.5	3
142	Immunotherapy of multiple sclerosis. Acta Neuropsychiatrica, 2009, 21, 27-34.	2.1	2
143	The two-pore domain potassium channel TASK3 functionally impacts glioma cell death. Journal of Neuro-Oncology, 2008, 87, 263-270.	2.9	34
144	Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neuroscience Letters, 2008, 446, 133-138.	2.1	12

#	Article	IF	CITATIONS
145	TWIK-related Acid-sensitive K+ Channel 1 (TASK1) and TASK3 Critically Influence T Lymphocyte Effector Functions. Journal of Biological Chemistry, 2008, 283, 14559-14570.	3.4	89
146	A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis. PLoS ONE, 2008, 3, e3149.	2.5	76