Wolfgang Wanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs, 2015, 85, 133-155.	2.4	735
2	Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 2014, 5, 3694.	5.8	594
3	Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Frontiers in Plant Science, 2019, 10, 157.	1.7	540
4	Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 2014, 5, 22.	1.5	501
5	Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biology and Biochemistry, 2016, 96, 74-81.	4.2	289
6	Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil. Soil Science Society of America Journal, 2010, 74, 1018-1027.	1.2	273
7	Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME Journal, 2014, 8, 1135-1146.	4.4	270
8	Long-Term Change in the Nitrogen Cycle of Tropical Forests. Science, 2011, 334, 664-666.	6.0	250
9	Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE, 2014, 9, e86388.	1.1	231
10	Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012, 93, 770-782.	1.5	228
11	The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	227
12	Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME Journal, 2008, 2, 561-570.	4.4	218
13	Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136, 107521.	4.2	217
14	Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26, 669-681.	4.2	217
15	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.	3.3	210
16	Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 2016, 97, 168-175.	4.2	205
17	Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters, 2007, 3, 487-490.	1.0	201
18	MANGROVE ISOTOPIC (Î'15N AND Î'13C) FRACTIONATION ACROSS A NITROGEN VS. PHOSPHORUS LIMITATION GRADIENT. Ecology, 2002, 83, 1065-1075.	1.5	192

#	Article	IF	CITATIONS
19	Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology and Biochemistry, 2010, 42, 360-372.	4.2	186
20	Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. European Journal of Soil Science, 2003, 54, 685-696.	1.8	175
21	Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME Journal, 2013, 7, 1620-1631.	4.4	163
22	Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia, 2008, 156, 861-870.	0.9	159
23	Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Communications in Mass Spectrometry, 2005, 19, 1401-1408.	0.7	145
24	Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Diversity, 2010, 44, 65-75.	4.7	143
25	Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Science Advances, 2017, 3, e1602781.	4.7	143
26	Direct dating of Early Upper Palaeolithic human remains from Mladeĕ Nature, 2005, 435, 332-335.	13.7	140
27	Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiology, 2001, 21, 705-715.	1.4	139
28	Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biology, 2003, 48, 220-232.	1.2	136
29	Longâ€ŧerm increases in intrinsic waterâ€use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biology, 2011, 17, 1049-1063.	4.2	135
30	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	1.6	127
31	Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry, 2019, 128, 45-55.	4.2	127
32	Determination of gross rates of amino acid production and immobilization inÂdecomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biology and Biochemistry, 2010, 42, 1293-1302.	4.2	118
33	Microbial physiology and soil CO ₂ efflux after 9Âyears of soil warming in a temperate forest – no indications for thermal adaptations. Global Change Biology, 2015, 21, 4265-4277.	4.2	104
34	Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 2018, 121, 212-220.	4.2	104
35	Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect*. Plant, Cell and Environment, 1999, 22, 1435-1443.	2.8	99
36	Long-term trends in cellulose Â13 C and water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree Physiology, 2005, 25, 745-752.	1.4	98

#	Article	IF	CITATIONS
37	Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia, 2002, 131, 350-355.	0.9	96
38	Short-term changes in carbon isotope composition of soluble carbohydrates and starch: from canopy leaves to the root system. Rapid Communications in Mass Spectrometry, 2006, 20, 653-660.	0.7	94
39	Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment. FEMS Microbiology Ecology, 2010, 74, 575-591.	1.3	93
40	Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biology and Biochemistry, 2020, 141, 107660.	4.2	93
41	Interactions of Nitrifying Bacteria and Heterotrophs: Identification of a Micavibrio-Like Putative Predator of Nitrospira spp. Applied and Environmental Microbiology, 2013, 79, 2027-2037.	1.4	90
42	Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biology and Biochemistry, 2019, 135, 304-315.	4.2	90
43	Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytologist, 2007, 175, 311-320.	3.5	88
44	Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis. Rapid Communications in Mass Spectrometry, 2001, 15, 1136-1140.	0.7	84
45	Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees - Structure and Function, 2011, 25, 103-113.	0.9	80
46	Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods. Rapid Communications in Mass Spectrometry, 2009, 23, 2476-2488.	0.7	76
47	Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra―and interspecific trait variability, and taxonomic signals. Functional Ecology, 2016, 30, 188-198.	1.7	76
48	Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant and Soil, 2006, 285, 221-231.	1.8	74
49	Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant and Soil, 2007, 295, 79-94.	1.8	74
50	Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant and Soil, 2011, 341, 495-504.	1.8	72
51	Spatioâ€ŧemporal variations determine plant–microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology, 2011, 99, 563-571.	1.9	68
52	Natural 15N abundance of plants and soils under different management practices in a montane grassland. Soil Biology and Biochemistry, 2006, 38, 1564-1576.	4.2	67
53	Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. ISME Journal, 2011, 5, 1771-1783.	4.4	67
54	No evidence of aquatic priming effects in hyporheic zone microcosms. Scientific Reports, 2014, 4, 5187.	1.6	66

#	Article	IF	CITATIONS
55	Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia, 2002, 133, 186-192.	0.9	65
56	Shift in soil–plant nitrogen dynamics of an alpine–nival ecotone. Plant and Soil, 2007, 301, 65-76.	1.8	65
57	Total Nitrogen Content and δ15N Signatures in Moss Tissue: Indicative Value for Nitrogen Deposition Patterns and Source Allocation on a Nationwide Scale. Environmental Science & Technology, 2008, 42, 8661-8667.	4.6	65
58	Physiological Responses of Bryophytes Thuidium tamariscinum and Hylocomium splendens to Increased Nitrogen Deposition. Annals of Botany, 2007, 99, 161-169.	1.4	64
59	Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests. Tree Physiology, 2017, 37, 1515-1526.	1.4	64
60	Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. Journal of Ecology, 2003, 91, 126-134.	1.9	63
61	Natural 15N abundance of epiphytes depends on the position within the forest canopy: source signals and isotope fractionation. Plant, Cell and Environment, 2002, 25, 581-589.	2.8	62
62	Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytologist, 2011, 192, 462-470.	3.5	61
63	A suite of sensitive chemical methods to determine the Î′ ¹⁵ N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Communications in Mass Spectrometry, 2010, 24, 3615-3623.	0.7	58
64	Difference in delta15N signatures between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N2 fixation to plant N. Journal of Experimental Botany, 2002, 53, 1109-1118.	2.4	57
65	A novel 15N tracer model reveals: Plant nitrate uptake governs nitrogen transformation rates in agricultural soils. Soil Biology and Biochemistry, 2013, 57, 301-310.	4.2	57
66	Evaluation of methods to measure differential15N labeling of soil and root N pools for studies of root exudation. Rapid Communications in Mass Spectrometry, 2004, 18, 2415-2425.	0.7	55
67	Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression. Biogeosciences, 2012, 9, 4537-4551.	1.3	55
68	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	1.6	55
69	Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica. Journal of Tropical Ecology, 2009, 25, 321-330.	0.5	53
70	Significant release and microbial utilization of amino sugars and d-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biology and Biochemistry, 2018, 123, 115-125.	4.2	50
71	Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biology and Biochemistry, 2016, 103, 300-307.	4.2	48
72	Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content. Soil Biology and Biochemistry, 2019, 133, 37-49.	4.2	48

#	Article	IF	CITATIONS
73	Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana. Journal of Experimental Botany, 2010, 61, 1375-1383.	2.4	47
74	Controls of hydrochemical fluxes via stemflow in tropical lowland rainforests: Effects of meteorology and vegetation characteristics. Journal of Hydrology, 2012, 452-453, 247-258.	2.3	47
75	Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB PLANTS, 2015, 7, .	1.2	47
76	Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress. Physiologia Plantarum, 1997, 101, 416-424.	2.6	45
77	Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica. PLoS ONE, 2015, 10, e0126748.	1.1	45
78	Light affects competition for inorganic and organic nitrogen between maize and rhizosphere microorganisms. Plant and Soil, 2008, 304, 59-72.	1.8	44
79	Long-Term Trends in Nitrogen Isotope Composition and Nitrogen Concentration in Brazilian Rainforest Trees Suggest Changes in Nitrogen Cycle. Environmental Science & Technology, 2010, 44, 1191-1196.	4.6	44
80	Nutrient limitation of alpine plants: Implications from leaf NÂ:ÂP stoichiometry and leaf δ ¹⁵ N. Journal of Plant Nutrition and Soil Science, 2014, 177, 378-387.	1.1	44
81	Application of stableâ€isotope labelling techniques for the detection of active diazotrophs. Environmental Microbiology, 2018, 20, 44-61.	1.8	44
82	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
83	Contrasting adaptations to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: water relations, osmotic adjustment and carbon isotope composition. Functional Plant Biology, 2000, 27, 985.	1.1	43
84	The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae. Insectes Sociaux, 2005, 52, 55-62.	0.7	43
85	Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. ISME Journal, 2020, 14, 3038-3053.	4.4	43
86	Large Canopy Exchange Fluxes of Inorganic and Organic Nitrogen and Preferential Retention of Nitrogen by Epiphytes in a Tropical Lowland Rainforest. Ecosystems, 2010, 13, 367-381.	1.6	39
87	Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions. Plant and Soil, 2011, 343, 17-35.	1.8	37
88	Root-derived respiration and non-structural carbon of rice seedlings. European Journal of Soil Biology, 2008, 44, 22-29.	1.4	36
89	Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry, 2011, 106, 371-396.	1.7	36
90	Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform. Analytical Chemistry, 2017, 89, 9192-9200.	3.2	36

#	Article	IF	CITATIONS
91	pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans. Environmental Science & Technology, 2018, 52, 6146-6156.	4.6	36
92	Size-Dependent Variation of Carbon and Nitrogen Isotope Abundances in Epiphytic Bromeliads. Plant Biology, 2003, 5, 137-142.	1.8	35
93	A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system. Science of the Total Environment, 2018, 631-632, 649-659.	3.9	35
94	Full 15N tracer accounting to revisit major assumptions of 15N isotope pool dilution approaches for gross nitrogen mineralization. Soil Biology and Biochemistry, 2018, 117, 16-26.	4.2	35
95	A simple method for <i>in situ</i> â€labelling with ¹⁵ N and ¹³ C of grassland plant species by foliar brushing. Methods in Ecology and Evolution, 2011, 2, 326-332.	2.2	34
96	Microtopography and Plant-Cover Controls on Nitrogen Dynamics in Hummock Tundra Ecosystems in Siberia. Arctic, Antarctic, and Alpine Research, 2005, 37, 435-443.	0.4	33
97	Vertical Redistribution of Soil Organic Carbon Pools After Twenty Years of Nitrogen Addition in Two Temperate Coniferous Forests. Ecosystems, 2019, 22, 379-400.	1.6	33
98	Warming and elevated CO ₂ intensify drought and recovery responses of grassland carbon allocation to soil respiration. Global Change Biology, 2021, 27, 3230-3243.	4.2	33
99	Nitrogen nutrition during ontogeny of hemiepiphytic Clusia species. Functional Plant Biology, 2002, 29, 733.	1.1	33
100	Flow history explains temporal and spatial variation of carbon fractionation in stream periphyton. Limnology and Oceanography, 2005, 50, 706-712.	1.6	31
101	Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter. Soil Biology and Biochemistry, 2012, 50, 174-187.	4.2	31
102	Use of decreasing foliar carbon isotope discrimination during water limitation as a carbon tracer to study whole plant carbon allocation. Plant, Cell and Environment, 2002, 25, 609-616.	2.8	30
103	Oxygen isotopes in tree rings record variation in precipitation <i>δ</i> ¹⁸ O and amount effects in the south of Mexico. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1604-1615.	1.3	30
104	Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Communications Biology, 2020, 3, 584.	2.0	30
105	Carbon isotope discrimination and water use efficiency relationships of alfalfa genotypes under irrigated and rain-fed organic farming. European Journal of Agronomy, 2013, 50, 82-89.	1.9	29
106	A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant and Soil, 2013, 371, 139-154.	1.8	27
107	Moss <i>δ</i> ¹³ C: an accurate proxy for past water environments in polar regions. Global Change Biology, 2015, 21, 2454-2464.	4.2	27
108	Quantifying microbial growth and carbon use efficiency in dry soil environments via ¹⁸ 0 water vapor equilibration. Global Change Biology, 2020, 26, 5333-5341.	4.2	27

#	Article	IF	CITATIONS
109	Longâ€ŧerm soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. Global Change Biology, 2022, 28, 3441-3458.	4.2	27
110	Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 521-529.	0.6	26
111	A cost-effective high-throughput microcosm system for studying nitrogen dynamics at the plant-microbe-soil interface. Plant and Soil, 2009, 317, 293-307.	1.8	26
112	Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Global Biogeochemical Cycles, 2014, 28, 1437-1454.	1.9	26
113	Contribution of carbonate weathering to the CO2 efflux from temperate forest soils. Biogeochemistry, 2015, 124, 273-290.	1.7	26
114	Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO ₂ , warming, and drought. Global Change Biology, 2022, 28, 2425-2441.	4.2	25
115	Metabolism of mineralâ€sorbed organic matter and microbial lifestyles in fluvial ecosystems. Geophysical Research Letters, 2016, 43, 1582-1588.	1.5	24
116	Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Forest Ecology and Management, 2021, 479, 118580.	1.4	24
117	Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understorey of a lowland tropical wet forest in Costa Rica. New Phytologist, 2005, 166, 577-588.	3.5	23
118	New insights into mechanisms driving carbon allocation in tropical forests. New Phytologist, 2015, 205, 137-146.	3.5	23
119	Microbial communities of arboreal and ground soils in the Esquinas rainforest, Costa Rica. Plant and Soil, 2010, 329, 65-74.	1.8	21
120	Resistant Soil Microbial Communities Show Signs of Increasing Phosphorus Limitation in Two Temperate Forests After Long-Term Nitrogen Addition. Frontiers in Forests and Global Change, 2019, 2,	1.0	21
121	Mode of photosynthesis during different life stages of hemiepiphytic Clusia species. Functional Plant Biology, 2002, 29, 725.	1.1	21
122	Canopy interactions of rainfall in an off-shore mangrove ecosystem dominated by Rhizophora mangle (Belize). Journal of Hydrology, 2007, 345, 70-79.	2.3	20
123	Physiological diversity and biogeography of vascular epiphytes at RÃo Changuinola, Panama. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 66-79.	0.6	20
124	Microbial decomposition of 13C- labeled phytosiderophores in the rhizosphere of wheat: Mineralization dynamics and key microbial groups involved. Soil Biology and Biochemistry, 2016, 98, 196-207.	4.2	20
125	Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: Gross protein depolymerization and microbial amino acid uptake. Soil Biology and Biochemistry, 2019, 130, 73-81.	4.2	20
126	Putting vascular epiphytes on the traits map. Journal of Ecology, 2022, 110, 340-358.	1.9	19

#	Article	IF	CITATIONS
127	N2 fixation by organically grown soybean in Central Europe: Method of quantification and agronomic effects. European Journal of Agronomy, 2012, 41, 11-17.	1.9	18
128	Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants. Biology and Fertility of Soils, 2013, 49, 1097-1107.	2.3	18
129	Carbon and Nitrogen Uptake of Calcareous Benthic Foraminifera along a Depth-Related Oxygen Gradient in the OMZ of the Arabian Sea. Frontiers in Microbiology, 2016, 7, 71.	1.5	17
130	Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (<i>Ammonia tepida</i> and) Tj ETQq0 0 0 rgBT /Overlock 3	10 Tf 350 61	7 Ind (&
131	Short-term 15N uptake kinetics and nitrogen nutrition of bryophytes in a lowland rainforest, Costa Rica. Functional Plant Biology, 2008, 35, 51.	1.1	15
132	Mimicking floodplain reconnection and disconnection using ¹⁵ N mesocosm incubations. Biogeosciences, 2012, 9, 4263-4278.	1.3	15
133	Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Frontiers in Microbiology, 2014, 5, 225.	1.5	15
134	Flexibility of nitrogen metabolism in the tropical C3–crassulacean acid metabolism tree species Clusia minor. Functional Plant Biology, 2002, 29, 741.	1.1	15
135	Functional Traits of a Rainforest Vascular Epiphyte Community: Trait Covariation and Indications for Host Specificity. Diversity, 2021, 13, 97.	0.7	14
136	No effect of long-term soil warming on diffusive soil inorganic and organic nitrogen fluxes in a temperate forest soil. Soil Biology and Biochemistry, 2021, 158, 108261.	4.2	14
137	Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (<i>Ammonia tepida</i> and <i>Haynesina) Tj ETQq1</i>	1 017384314	l ngBT /Overl
138	Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms. Frontiers in Microbiology, 2012, 3, 35.	1.5	12
139	Age alters uptake pattern of organic and inorganic nitrogen by rubber trees. Tree Physiology, 2018, 38, 1685-1693.	1.4	12
140	Denitrification is the major nitrous acid production pathway in boreal agricultural soils. Communications Earth & Environment, 2021, 2, .	2.6	12
141	Preservation effects on isotopic signatures in benthic foraminiferal biomass. Marine Micropaleontology, 2018, 144, 50-59.	0.5	11
142	Beta diversity and oligarchic dominance in the tropical forests of Southern Costa Rica. Biotropica, 2019, 51, 117-128.	0.8	11
143	Denitrification Is the Main Nitrous Oxide Source Process in Grassland Soils According to Quasi ontinuous Isotopocule Analysis and Biogeochemical Modeling. Global Biogeochemical Cycles, 2020, 34, e2019GB006505.	1.9	11
144	Cyanate is a low abundance but actively cycled nitrogen compound in soil. Communications Earth & Environment, 2021, 2, .	2.6	11

#	Article	IF	CITATIONS
145	Mangrove Isotopic (δ 15 N and δ 13 C) Fractionation across a Nitrogen vs. Phosphorus Limitation Gradient. Ecology, 2002, 83, 1065.	1.5	10
146	Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer <i>Ammonia tepida</i> . Biology Open, 2018, 7, .	0.6	10
147	Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite. Frontiers in Microbiology, 2020, 11, 1710.	1.5	10
148	Stable isotope signatures reflect dietary diversity in European forest moths. Frontiers in Zoology, 2016, 13, 37.	0.9	9
149	A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle. Biogeosciences, 2019, 16, 3047-3068.	1.3	9
150	Glacier forelands reveal fundamental plant and microbial controls on shortâ€ŧerm ecosystem nitrogen retention. Journal of Ecology, 2021, 109, 3710-3723.	1.9	9
151	The relationship between N isotopic fractionation within soybean and <scp>N₂</scp> fixation during soybean development. Physiologia Plantarum, 2014, 152, 546-557.	2.6	8
152	14C Dating of Early Upper Palaeolithic Human and Faunal Remains from Mladeĕ , 2006, , 149-158.		8
153	Title is missing!. , 2000, 221, 13-24.		7
154	Is local trait variation related to total range size of tropical trees?. PLoS ONE, 2018, 13, e0193268.	1.1	7
155	Natural abundance radiocarbon in soil microbial biomass: Results from a glacial foreland. Soil Biology and Biochemistry, 2011, 43, 1356-1361.	4.2	6
156	Biological nitrogen fixation and biomass production stability in alfalfa (<i>Medicago sativa</i> L.) genotypes under organic management conditions. Biological Agriculture and Horticulture, 2015, 31, 177-192.	0.5	6
157	Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 30-37.	1.1	6
158	Leaf trait coâ€variation and tradeâ€offs in gallery forest C ₃ and CAM epiphytes. Biotropica, 2021, 53, 520-535.	0.8	6
159	Effects of heavy elements (Pb, Cu, Zn) on algal food uptake by Elphidium excavatum (Foraminifera). Heliyon, 2021, 7, e08427.	1.4	6
160	Extracellular enzyme stoichiometry reflects the metabolic C-and P-limitations along a grassland succession on the Loess Plateau in China. Applied Soil Ecology, 2022, 179, 104594.	2.1	6
161	An unexpected source of nitrogen for root uptake: positively charged amino acids dominate soil diffusive nitrogen fluxes. New Phytologist, 2021, 231, 2104-2106.	3.5	5
162	Isotopically characterised N ₂ O reference materials for use as community standards. Rapid Communications in Mass Spectrometry, 2022, 36, e9296.	0.7	5

#	Article	IF	CITATIONS
163	Successional habitat filtering of rainforest trees is explained by potential growth more than by functional traits. Functional Ecology, 2020, 34, 1438-1447.	1.7	4
164	The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer. Biogeosciences, 2021, 18, 1395-1406.	1.3	4
165	Consistent shift in nutritional ecology of ants reveals trophic flexibility across alpine treeâ€line ecotones. Ecological Entomology, 2021, 46, 1082-1092.	1.1	4
166	Isotopic Elucidation of Microbial Nitrogen Transformations in Forest Soils. Global Biogeochemical Cycles, 2021, 35, .	1.9	4
167	Moss δ13 C: Implications for subantarctic palaeohydrological reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453, 20-29.	1.0	3
168	Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress. Physiologia Plantarum, 1997, 101, 416-424.	2.6	3
169	Assimilation of Particular Organic Matter and Dissolved Organic or Inorganic Compounds by Cribroelphidium selseyense (Foraminifera). Frontiers in Marine Science, 2021, 8, .	1.2	3
170	Nitrogen Kinetic Isotope Effects of Nitrification by the Complete Ammonia Oxidizer Nitrospira inopinata. MSphere, 2021, 6, e0063421.	1.3	3
171	Broad―and smallâ€scale environmental gradients drive variation in chemical, but not morphological, leaf traits of vascular epiphytes. Functional Ecology, 2022, 36, 1858-1872.	1.7	3
172	Phosphoenol pyruvate carboxylase in mistletoe leaves: Regulation of gene expression, protein content, and covalent modification. Physiologia Plantarum, 2001, 112, 343-352.	2.6	2
173	Assessing the effect of lucerne utilization systems in the Pannonian region of Austria. Archives of Agronomy and Soil Science, 2014, 60, 297-311.	1.3	1
174	Selected papers of the 1stJoint European Stable Isotope Users Group Meeting (JESIUM), August 30 to September 3, 2004, Vienna, Austria. Isotopes in Environmental and Health Studies, 2005, 41, 185-188.	0.5	0
175	INVESTIGATION OF THE INTERACTION OF ENDOPHYTES AND POPLAR PLANTS IN IN VITRO CULTURE AND FIELD TRIALS. Acta Horticulturae, 2015, , 439-442.	0.1	0