
Michaël Maes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224132/publications.pdf Version: 2024-02-01

ΜΙCΗΛëΙ ΜΛΕς

#	Article	IF	CITATIONS
1	Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway. Molecular Neurobiology, 2013, 48, 190-204.	4.0	389
2	Experimental models of liver fibrosis. Archives of Toxicology, 2016, 90, 1025-1048.	4.2	243
3	Experimental models of hepatotoxicity related to acute liver failure. Toxicology and Applied Pharmacology, 2016, 290, 86-97.	2.8	160
4	Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Progress in Lipid Research, 2015, 59, 106-125.	11.6	130
5	Inhibitors of connexin and pannexin channels as potential therapeutics. , 2017, 180, 144-160.		114
6	Connexins and their channels in inflammation. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 413-439.	5.2	93
7	Pannexin1 as mediator of inflammation and cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 51-61.	4.1	85
8	Connexin and pannexin (hemi)channels in the liver. Frontiers in Physiology, 2014, 4, 405.	2.8	45
9	Connexin and pannexin signaling in gastrointestinal and liver disease. Translational Research, 2015, 166, 332-343.	5.0	42
10	Measurement of Apoptotic and Necrotic Cell Death in Primary Hepatocyte Cultures. Methods in Molecular Biology, 2015, 1250, 349-361.	0.9	39
11	TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice. International Journal of Molecular Sciences, 2018, 19, 817.	4.1	34
12	Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Scientific Reports, 2017, 7, 8268.	3.3	33
13	Primary hepatocytes and their cultures in liver apoptosis research. Archives of Toxicology, 2014, 88, 199-212.	4.2	32
14	Roles of connexins and pannexins in digestive homeostasis. Cellular and Molecular Life Sciences, 2015, 72, 2809-2821.	5.4	32
15	Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicology Letters, 2017, 278, 30-37.	0.8	31
16	Involvement of connexin43 in acetaminophen-induced liver injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1111-1121.	3.8	29
17	Connexins and pannexins in liver damage. EXCLI Journal, 2016, 15, 177-86.	0.7	23
18	Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 819-830.	3.8	22

MICHAëL MAES

#	Article	IF	CITATIONS
19	Structure, Regulation and Function of Gap Junctions in Liver. Cell Communication and Adhesion, 2015, 22, 29-37.	1.0	18
20	Connexins, Pannexins, and Their Channels in Fibroproliferative Diseases. Journal of Membrane Biology, 2016, 249, 199-213.	2.1	17
21	Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Archives of Toxicology, 2017, 91, 2245-2261.	4.2	16
22	Connexin32 deficiency is associated with liver injury, inflammation and oxidative stress in experimental nonâ€alcoholic steatohepatitis. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 197-206.	1.9	16
23	Connexin32: a mediator of acetaminophen-induced liver injury?. Toxicology Mechanisms and Methods, 2016, 26, 88-96.	2.7	15
24	Connexin32 deficiency exacerbates carbon tetrachloride-induced hepatocellular injury and liver fibrosis in mice. Toxicology Mechanisms and Methods, 2016, 26, 362-370.	2.7	13
25	Proteomic and metabolomic responses to connexin43 silencing in primary hepatocyte cultures. Archives of Toxicology, 2013, 87, 883-894.	4.2	12
26	Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Archives of Toxicology, 2018, 92, 2607-2627.	4.2	11
27	Models and methods for in vitro testing of hepatic gap junctional communication. Toxicology in Vitro, 2015, 30, 569-577.	2.4	10
28	Connexin-based signaling and drug-induced hepatotoxicity. Journal of Clinical and Translational Research, 2017, 3, 189-198.	0.3	5
29	Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction. Methods in Molecular Biology, 2016, 1437, 1-19.	0.9	4
30	Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis. Methods in Molecular Biology, 2016, 1437, 37-53.	0.9	2