Christoph W MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223212/publications.pdf

Version: 2024-02-01

116 papers 11,470 citations

51
h-index

103 g-index

134 all docs

134 docs citations

times ranked

134

14132 citing authors

#	Article	IF	Citations
1	Structural basis of DNA methylation-dependent site selectivity of the Epstein–Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Research, 2022, 50, 490-511.	6.5	8
2	Mechanism of RNA polymerase I selection by transcription factor UAF. Science Advances, 2022, 8, eabn5725.	4.7	9
3	Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nature Reviews Molecular Cell Biology, 2022, 23, 603-622.	16.1	44
4	An integrated model for termination of RNA polymerase III transcription. Science Advances, 2022, 8, .	4.7	14
5	Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nature Structural and Molecular Biology, 2021, 28, 210-219.	3.6	59
6	Cryo-EM structures of human RNA polymerase I. Nature Structural and Molecular Biology, 2021, 28, 997-1008.	3.6	28
7	A modular platform for automated cryo-FIB workflows. ELife, 2021, 10, .	2.8	65
8	Structure of the TFIIIC subcomplex I,, A provides insights into RNA polymerase III pre-initiation complex formation. Nature Communications, 2020, 11, 4905.	5.8	16
9	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	13.7	139
10	Structural basis for RNA polymerase III transcription repression by Maf1. Nature Structural and Molecular Biology, 2020, 27, 229-232.	3.6	37
11	Molecular basis of tRNA recognition by the Elongator complex. Science Advances, 2019, 5, eaaw2326.	4.7	44
12	Unleashing the Power of ASH1L Methyltransferase. Structure, 2019, 27, 727-728.	1.6	7
13	Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nature Communications, 2019, 10, 5543.	5.8	33
14	Structural Basis for the Activation of the Deubiquitinase Calypso by the Polycomb Protein ASX. Structure, 2019, 27, 528-536.e4.	1.6	19
15	The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. ELife, 2019, 8, .	2.8	36
16	Molecular mechanism of promoter opening by RNA polymerase III. Nature, 2018, 553, 295-300.	13.7	101
17	Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell, 2018, 173, 1495-1507.e18.	13.5	183
18	Structural asymmetry in the eukaryotic Elongator complex. FEBS Letters, 2018, 592, 502-515.	1.3	29

#	Article	IF	Citations
19	The signalling conformation of the insulin receptor ectodomain. Nature Communications, 2018, 9, 4420.	5.8	98
20	The cryo-EM resolution revolution and transcription complexes. Current Opinion in Structural Biology, 2018, 52, 8-15.	2.6	31
21	Molecular architecture of polycomb repressive complexes. Biochemical Society Transactions, 2017, 45, 193-205.	1.6	1 53
22	Architecture of the yeast Elongator complex. EMBO Reports, 2017, 18, 264-279.	2.0	75
23	The LOTUS domain is a conserved DEAD-box RNA helicase regulator essential for the recruitment of Vasa to the germ plasm and nuage. Genes and Development, 2017, 31, 939-952.	2.7	61
24	Structural insights into transcription initiation by yeast RNA polymerase I. EMBO Journal, 2017, 36, 2698-2709.	3.5	58
25	RNA polymerase I and III: similar yet unique. Current Opinion in Structural Biology, 2017, 47, 88-94.	2.6	68
26	Editorial overview: Protein–nucleic acid interactions: An expanding universe. Current Opinion in Structural Biology, 2017, 47, iv-v.	2.6	1
27	RNA polymerase III initiation on coligo DNA templates containing loops of variable sequence, size and nucleotide chemistry. Gene, 2017, 612, 49-54.	1.0	1
28	A synthetic biology approach to probing nucleosome symmetry. ELife, 2017, 6, .	2.8	16
29	Transcribing <scp>RNA</scp> polymerase <scp>III</scp> observed by electron cryomicroscopy. FEBS Journal, 2016, 283, 2811-2819.	2.2	18
30	Molecular Structures of Transcribing RNA Polymerase I. Molecular Cell, 2016, 64, 1135-1143.	4.5	85
31	A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT. Nature Communications, 2016, 7, 13855.	5.8	103
32	Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nature Methods, 2016, 13, 515-520.	9.0	49
33	Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nature Structural and Molecular Biology, 2016, 23, 794-802.	3.6	59
34	Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription, 2016, 7, 127-132.	1.7	9
35	Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis. Cell, 2016, 164, 999-1014.	13.5	179
36	The Combination of X-Ray Crystallography and Cryo-Electron Microscopy Provides Insight into the Overall Architecture of the Dodecameric Rvb1/Rvb2 Complex. PLoS ONE, 2016, 11, e0146457.	1.1	14

#	Article	IF	Citations
37	Xlink Analyzer: Software for analysis and visualization of cross-linking data in the context of three-dimensional structures. Journal of Structural Biology, 2015, 189, 177-183.	1.3	156
38	Structure of the Kti11/Kti13 Heterodimer and Its Double Role in Modifications of tRNA and Eukaryotic Elongation Factor 2. Structure, 2015, 23, 149-160.	1.6	36
39	The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities. Cell Reports, 2015, 12, 587-598.	2.9	76
40	Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nature Communications, 2015, 6, 7387.	5.8	57
41	Molecular structures of unbound and transcribing RNA polymerase III. Nature, 2015, 528, 231-236.	13.7	167
42	Enzyme–chromatin complex visualized. Nature, 2014, 514, 572-573.	13.7	2
43	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	6.5	55
44	Solving the RNA polymerase I structural puzzle. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2570-2582.	2.5	23
45	Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nature Structural and Molecular Biology, 2014, 21, 569-571.	3.6	376
46	Crystal structure of the 14-subunit RNA polymeraseÂl. Nature, 2013, 502, 644-649.	13.7	179
47	Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements. Genes and Development, 2013, 27, 2367-2379.	2.7	53
48	Structural insights into Elongator function. Current Opinion in Structural Biology, 2013, 23, 235-242.	2.6	52
49	Structure of a Truncation Mutant of the Nuclear Export Factor CRM1 Provides Insights into the Auto-Inhibitory Role of Its C-Terminal Helix. Structure, 2013, 21, 1338-1349.	1.6	15
50	Bacterial Expression, Purification, and Crystallization of Tyrosine Phosphorylated STAT Proteins. Methods in Molecular Biology, 2013, 967, 301-317.	0.4	3
51	RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Research, 2013, 41, 9183-9196.	6.5	23
52	Structural and Functional Characterization of a Phosphatase Domain within Yeast General Transcription Factor IIIC. Journal of Biological Chemistry, 2013, 288, 15110-15120.	1.6	13
53	Elongator. Transcription, 2012, 3, 273-276.	1.7	28
54	The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nature Structural and Molecular Biology, 2012, 19, 314-320.	3.6	85

#	Article	IF	Citations
55	Mass Spectrometry Reveals Stable Modules in holo and apo RNA Polymerases I and III. Structure, 2011, 19, 90-100.	1.6	47
56	Recognizing and remodeling the nucleosome. Current Opinion in Structural Biology, 2011, 21, 335-341.	2.6	25
57	Human importin alpha and RNA do not compete for binding to influenza A virus nucleoprotein. Virology, 2011, 409, 84-90.	1.1	27
58	Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biology, 2011, 8, 760-765.	1.5	12
59	Chromatin-modifying Complex Component Nurf55/p55 Associates with Histones H3 and H4 and Polycomb Repressive Complex 2 Subunit $Su(z)12$ through Partially Overlapping Binding Sites. Journal of Biological Chemistry, 2011, 286, 23388-23396.	1.6	61
60	Insights into the Function of the CRM1 Cofactor RanBP3 from the Structure of Its Ran-Binding Domain. PLoS ONE, 2011, 6, e17011.	1.1	18
61	WD40 proteins propel cellular networks. Trends in Biochemical Sciences, 2010, 35, 565-574.	3.7	518
62	Solving the NES problem. Nature Structural and Molecular Biology, 2010, 17, 1288-1289.	3.6	3
63	Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO Journal, 2010, 29, 3762-3772.	3.5	64
64	Full Repression of RNA Polymerase III Transcription Requires Interaction between Two Domains of Its Negative Regulator Maf1. Journal of Biological Chemistry, 2010, 285, 35719-35727.	1.6	13
65	Structural Basis of TBX5–DNA Recognition: The T-Box Domain in Its DNA-Bound and -Unbound Form. Journal of Molecular Biology, 2010, 400, 71-81.	2.0	46
66	A systematic screen for protein–lipid interactions in <i>Saccharomyces cerevisiae</i> . Molecular Systems Biology, 2010, 6, 430.	3.2	146
67	Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt. EMBO Journal, 2009, 28, 1965-1977.	3.5	77
68	Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature, 2009, 461, 664-668.	13.7	395
69	Structure of the <i>Drosophila</i> nucleosome core particle highlights evolutionary constraints on the H2Aâ€H2B histone dimer. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1-7.	1.5	55
70	Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO Journal, 2008, 27, 2628-2637.	3.5	97
71	Insights into Transcription Initiation and Termination from the Electron Microscopy Structure of Yeast RNA Polymerase III. Molecular Cell, 2007, 25, 813-823.	4.5	74
72	Structural and functional analyses of methylâ€lysine binding by the malignant brain tumour repeat protein Sex comb on midleg. EMBO Reports, 2007, 8, 1031-1037.	2.0	61

#	Article	IF	CITATIONS
73	Solution Study of the NF-κB p50-DNA Complex by UV Laser Protein-DNA Cross-linking¶. Photochemistry and Photobiology, 2007, 77, 592-596.	1.3	2
74	Structural Basis of Lytic Cycle Activation by the Epstein-Barr Virus ZEBRA Protein. Molecular Cell, 2006, 21, 565-572.	4.5	82
75	Structure of the Ï,,60/Î"Ï,,91 Subcomplex of Yeast Transcription Factor IIIC: Insights into Preinitiation Complex Assembly. Molecular Cell, 2006, 24, 221-232.	4.5	32
76	Expression, proteolytic analysis, reconstitution, and crystallization of the Ï"60/Ĩ"91 subcomplex of yeast TFIIIC. Protein Expression and Purification, 2006, 45, 255-261.	0.6	3
77	Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein–Barr virus ZEBRA protein. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 210-214.	0.7	4
78	HDAC6–p97/VCP controlled polyubiquitin chain turnover. EMBO Journal, 2006, 25, 3357-3366.	3.5	248
79	Karyopherin flexibility in nucleocytoplasmic transport. Current Opinion in Structural Biology, 2006, 16, 237-244.	2.6	186
80	Interaction of influenza virus proteins with nucleosomes. Virology, 2005, 332, 329-336.	1.1	54
81	The Histone Fold Subunits of Drosophila CHRAC Facilitate Nucleosome Sliding through Dynamic DNA Interactions. Molecular and Cellular Biology, 2005, 25, 9886-9896.	1.1	71
82	The Histone Octamer Is Invisible When NF-ÎB Binds to the Nucleosome. Journal of Biological Chemistry, 2004, 279, 42374-42382.	1.6	60
83	Architecture of CRM1/Exportin1 Suggests How Cooperativity Is Achieved during Formation of a Nuclear Export Complex. Molecular Cell, 2004, 16, 761-775.	4.5	119
84	Structure of an Activated Dictyostelium STAT in Its DNA-Unbound Form. Molecular Cell, 2004, 13, 791-804.	4.5	60
85	Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO Journal, 2003, 22, 1835-1845.	3.5	71
86	Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO Journal, 2003, 22, 4646-4655.	3.5	174
87	Crystal Structure and Functional Analysis of a Nucleosome Recognition Module of the Remodeling Factor ISWI. Molecular Cell, 2003, 12, 449-460.	4.5	239
88	Solution Study of the NF-κB p50–DNA Complex by UV Laser Protein–DNA Cross-linking¶. Photochemistry and Photobiology, 2003, 77, 592.	1.3	16
89	X-Ray Crystal Structure of STAT Proteins and Structure-Activity Relationships. , 2003, , 311-325.		1
90	The GCM domain is a Zn-coordinating DNA-binding domain. FEBS Letters, 2002, 528, 95-100.	1.3	26

#	Article	IF	Citations
91	Structure of the DNA-Bound T-Box Domain of Human TBX3, a Transcription Factor Responsible for Ulnar-Mammary Syndrome. Structure, 2002, 10, 343-356.	1.6	105
92	Comparison of ARM and HEAT protein repeats. Journal of Molecular Biology, 2001, 309, 1-18.	2.0	464
93	Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family. EMBO Journal, 2001, 20, 6180-6190.	3.5	68
94	Transcription factors: global and detailed views. Current Opinion in Structural Biology, 2001, 11, 26-32.	2.6	54
95	Nuclear import factors importin $\hat{l}\pm$ and importin \hat{l}^2 undergo mutually induced conformational changes upon association. FEBS Letters, 2000, 484, 291-298.	1.3	48
96	Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2919-2924.	3.3	354
97	Structure of importin-β bound to the IBB domain of importin-α. Nature, 1999, 399, 221-229.	13.7	530
98	A firm hand on NFκB: structures of the lκBα–NFκB complex. Structure, 1999, 7, R1-R6.	1.6	30
99	Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA. Structure, 1999, 7, 841-852.	1.6	26
100	Three-dimensional structure of the Stat $3\hat{l}^2$ homodimer bound to DNA. Nature, 1998, 394, 145-151.	13.7	780
101	Expression of a tyrosine phosphorylated, DNA binding Stat3β dimer in bacteria. FEBS Letters, 1998, 441, 141-147.	1.3	42
102	Preparation and Properties of Oligodeoxynucleotides Containing 5-lodouracil and 5-Bromo- and 5-lodocytosine. Bioconjugate Chemistry, 1997, 8, 757-761.	1.8	21
103	Engineering of diffraction-quality crystals of the NF-κB P52 homodimer:DNA complex. FEBS Letters, 1997, 405, 373-377.	1.3	23
104	Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature, 1997, 389, 884-888.	13.7	318
105	Structure of the human NF-kappa B p52 homodimer-DNA complex at 2.1Aresolution. EMBO Journal, 1997, 16, 7078-7090.	3.5	126
106	Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure, 1996, 4, 147-156.	1.6	403
107	Comparison of two different DMA-binding modes of the NF-κB p50 homodimer. Nature Structural Biology, 1996, 3, 224-227.	9.7	22
108	Structure of the NF-κB p50 homodimer bound to DNA. Nature, 1995, 373, 311-317.	13.7	531

#	Article	IF	CITATIONS
109	The structure of the NF-κB p50:DNA-complex a starting point for analyzing the Rel family. FEBS Letters, 1995, 369, 113-117.	1.3	32
110	Crystal structures of two mutants of adenylate kinase from Escherichia coli that modify the Gly-loop. Proteins: Structure, Function and Bioinformatics, 1993, 15, 42-49.	1.5	34
111	Delineation of two functional regions of transcription factor TFIIB Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5628-5632.	3.3	93
112	Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Ã resolution. Journal of Molecular Biology, 1992, 224, 159-177.	2.0	491
113	Highly ordered crystals of channel-forming membrane proteins, of nucleoside-monophosphate kinases, of FAD-containing oxidoreductases and of sugar-processing enzymes and their mutants. Journal of Crystal Growth, 1992, 122, 385-392.	0.7	2
114	Induced-fit movements in adenylate kinases. Journal of Molecular Biology, 1990, 213, 627-630.	2.0	194
115	Crystallization of proteins under microgravity. FEBS Letters, 1989, 259, 194-198.	1.3	31
116	Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor P1,P5-di(adenosine-5′-)pentaphosphate. Journal of Molecular Biology, 1988, 202, 909-912.	2.0	75