Gisela E Hagberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223152/publications.pdf

Version: 2024-02-01

85 papers 3,091 citations

33 h-index 52 g-index

94 all docs 94 docs citations

times ranked

94

4405 citing authors

#	Article	IF	CITATIONS
1	Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(\hat{l}^2 -11C) DOPA and PET. Biological Psychiatry, 1999, 46, 681-688.	1.3	267
2	Essential Head Tremor Is Associated with Cerebellar Vermis Atrophy: A Volumetric and Voxel-Based Morphometry MR Imaging Study. American Journal of Neuroradiology, 2008, 29, 1692-1697.	2.4	158
3	Implicit learning deficits in dyslexic adults: An fMRI study. Neurolmage, 2006, 33, 1218-1226.	4.2	133
4	Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease. Brain Research Bulletin, 2006, 71, 259-269.	3.0	121
5	Combined Volumetry and DTI in Subcortical Structures of Mild Cognitive Impairment and Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 19, 1273-1282.	2.6	107
6	Volume and iron content in basal ganglia and thalamus. Human Brain Mapping, 2009, 30, 2667-2675.	3.6	98
7	From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. , 1998, 11, 148-156.		97
8	Improved Detection of Event-Related Functional MRI Signals Using Probability Functions. NeuroImage, 2001, 14, 1193-1205.	4.2	97
9	Brain Regions Involved in Fatigue Sensation: Reduced Acetylcarnitine Uptake into the Brain. NeuroImage, 2002, 17, 1256-1265.	4.2	97
10	The appreciation of wine by sommeliers: a functional magnetic resonance study of sensory integration. Neurolmage, 2005, 25, 570-578.	4.2	90
11	Voxelâ€based analysis of R2* maps in the healthy human brain. Journal of Magnetic Resonance Imaging, 2007, 26, 1413-1420.	3.4	79
12	Functional quantitative susceptibility mapping (fQSM). NeuroImage, 2014, 100, 112-124.	4.2	76
13	In Vivo proton MR spectroscopy of human gliomas: definition of metabolic coordinates for multi-dimensional classification. Magnetic Resonance in Medicine, 1995, 34, 242-252.	3.0	68
14	PET with 11 C-deuterium-deprenyl and 18 F-FDG in focal epilepsy. Acta Neurologica Scandinavica, 2001, 103, 360-366.	2.1	62
15	Characterization of white matter fiber bundles with <i>T</i> relaxometry and diffusion tensor imaging. Magnetic Resonance in Medicine, 2009, 61, 1066-1072.	3.0	62
16	Effect of <i>r</i> ₁ and <i>r</i> ₂ relaxivity of gadoliniumâ€based contrast agents on the <i>T</i> ₁ â€weighted MR signal at increasing magnetic field strengths. Contrast Media and Molecular Imaging, 2013, 8, 456-465.	0.8	62
17	Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage, 2008, 39, 87-106.	4.2	55
18	Proton MRS of Gadolinium-enhancing MS Plaques and Metabolic Changes in Normal-Appearing White Matter. Magnetic Resonance in Medicine, 1995, 33, 811-817.	3.0	54

#	Article	IF	CITATIONS
19	Challenges for detection of neuronal currents by MRI. Magnetic Resonance Imaging, 2006, 24, 483-493.	1.8	54
20	Real-time quantification of T2* changes using multiecho planar imaging and numerical methods. Magnetic Resonance in Medicine, 2002, 48, 877-882.	3.0	51
21	Bone Marrow Lipid Profiles from Peripheral Skeleton as Potential Biomarkers for Osteoporosis: A 1H-MR Spectroscopy Study. Academic Radiology, 2016, 23, 273-283.	2.5	49
22	Dualâ€Frequency Calciumâ€Responsive MRI Agents. Chemistry - A European Journal, 2014, 20, 7351-7362.	3.3	44
23	Structural Correlates of Implicit Learning Deficits in Subjects with Developmental Dyslexia. Annals of the New York Academy of Sciences, 2008, 1145, 212-221.	3.8	41
24	<i>In vivo</i> quantification of the bound pool <i>T</i> ₁ in human white matter using the binary spinâ€"bath model of progressive magnetization transfer saturation. Physics in Medicine and Biology, 2009, 54, N529-N540.	3.0	41
25	Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents. Magnetic Resonance Imaging, 2004, 22, 1429-1440.	1.8	40
26	Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T. NeuroImage, 2017, 144, 203-216.	4.2	40
27	Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience, 2009, 162, 827-835.	2.3	39
28	Regulation of dopaminergic activity in early Parkinson's disease. Annals of Neurology, 1999, 46, 359-365.	5.3	37
29	A smart ¹⁹ F and ¹ H MRI probe with selfâ€immolative linker as a versatile tool for detection of enzymes. Contrast Media and Molecular Imaging, 2012, 7, 478-483.	0.8	37
30	Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI. PLoS ONE, 2016, 11, e0167274.	2.5	37
31	Coefficient D(av) is more sensitive than fractional anisotropy in monitoring progression of irreversible tissue damage in focal nonactive multiple sclerosis lesions. American Journal of Neuroradiology, 2003, 24, 663-70.	2.4	37
32	Proton chemical shift imaging, metabolic maps, and single voxel spectroscopy of glial brain tumors. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1996, 4, 139-150.	2.0	36
33	MR spectroscopy for in vivo assessment of the oncometabolite 2â€hydroxyglutarate and its effects on cellular metabolism in human brain gliomas at 9.4T. Journal of Magnetic Resonance Imaging, 2016, 44, 823-833.	3.4	36
34	Kinetic Compartment Modeling of [11C]-5-Hydroxy-L-Tryptophan for Positron Emission Tomography Assessment of Serotonin Synthesis in Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1352-1366.	4.3	35
35	Simultaneous EEG–fMRI acquisition: how far is it from being a standardized technique?. Magnetic Resonance Imaging, 2004, 22, 1445-1455.	1.8	32
36	The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents. Magnetic Resonance Imaging, 2008, 26, 1026-1040.	1.8	31

#	Article	IF	CITATIONS
37	N-[11C]Methylspiperone PET, in contrast to [11C]raclopride, fails to detect D2 receptor occupancy by an atypical neuroleptic. Psychiatry Research - Neuroimaging, 1998, 82, 147-160.	1.8	30
38	Investigation of a Calcium-Responsive Contrast Agent in Cellular Model Systems: Feasibility for Use as a Smart Molecular Probe in Functional MRI. ACS Chemical Neuroscience, 2014, 5, 360-369.	3.5	29
39	Multimodal fMRI tractography in normal subjects and in clinically recovered traumatic brain injury patients. Neurolmage, 2007, 34, 1331-1341.	4.2	27
40	Evaluation of mixed effects in event-related fMRI studies: impact of first-level design and filtering. NeuroImage, 2004, 22, 1351-1370.	4.2	26
41	Model-free analysis of brain fMRI data by recurrence quantification. Neurolmage, 2007, 37, 489-503.	4.2	25
42	Ultra-High Field MRI in Alzheimer's Disease: Effective Transverse Relaxation Rate and Quantitative Susceptibility Mapping of Human Brain In Vivo and Ex Vivo compared to Histology. Journal of Alzheimer's Disease, 2020, 73, 1481-1499.	2.6	24
43	Advantages of using multiple-echo image combination and asymmetric triangular phase masking in magnetic resonance venography at 3 T. Magnetic Resonance Imaging, 2009, 27, 23-37.	1.8	23
44	Phase stability in fMRI time series: Effect of noise regression, off-resonance correction and spatial filtering techniques. Neurolmage, 2012, 59, 3748-3761.	4.2	23
45	Synthesis and Characterization of Binding of 5-[76Br] Bromo-3-[[2(S)-Azetidinyl]methoxy]pyridine, a Novel Nicotinic Acetylcholine Receptor Ligand, in Rat Brain. Journal of Neurochemistry, 2001, 73, 1264-1272.	3.9	22
46	Diffusion properties of conventional and calciumâ€sensitive MRI contrast agents in the rat cerebral cortex. Contrast Media and Molecular Imaging, 2014, 9, 71-82.	0.8	22
47	"Wrong Way Up― Temporal and Spatial Dynamics of the Networks for Body Motion Processing at 9.4 T. Cerebral Cortex, 2017, 27, 5318-5330.	2.9	21
48	Fast detection of diffuse axonal damage in severe traumatic brain injury: comparison of gradient-recalled echo and turbo proton echo-planar spectroscopic imaging MRI sequences. American Journal of Neuroradiology, 2005, 26, 1140-8.	2.4	21
49	Validation studies on the 5-hydroxy-L-[\hat{l}^2 -11C]-tryptophan/PET method for probing the decarboxylase step in serotonin synthesis. Synapse, 2006, 59, 521-531.	1.2	19
50	Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition. Neuroscience Letters, 2004, 373, 32-37.	2.1	18
51	The sign convention for phase values on different vendor systems: definition and implications for susceptibility-weighted imaging. Magnetic Resonance Imaging, 2010, 28, 297-300.	1.8	18
52	Arylâ€Phosphonate Lanthanide Complexes and Their Fluorinated Derivatives: Investigation of Their Unusual Relaxometric Behavior and Potential Application as Dual Frequency ¹ H/ ¹⁹ Fâ€MRI Probes. Chemistry - A European Journal, 2013, 19, 11644-11660.	3.3	18
53	In vivo multiple spin echoes imaging of trabecular bone on a clinical 1.5 T MR scanner. Magnetic Resonance Imaging, 2002, 20, 623-629.	1.8	17
54	Assignment of glial brain tumors in humans byin vivo 1H-magnetic resonance spectroscopy and multidimensional metabolic classification. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1997, 5, 179-183.	2.0	16

#	Article	IF	CITATIONS
55	Pulsed saturation of the standard two-pool model for magnetization transfer. Part I: The steady state. Concepts in Magnetic Resonance, 2004, 21A, 37-49.	1.3	15
56	Smoothing that does not blur: Effects of the anisotropic approach for evaluating diffusion tensor imaging data in the clinic. Journal of Magnetic Resonance Imaging, 2010, 31, 690-697.	3.4	15
57	Metabolic correlatives of brain activity in a FOS epilepsy patient. NMR in Biomedicine, 2010, 23, 170-178.	2.8	14
58	Intermolecular double quantum coherences (iDQc) and diffusion-weighted imaging (DWI) imaging of the human brain at 1.5 T. Magnetic Resonance Imaging, 2003, 21, 1151-1157.	1.8	12
59	Kinetic Compartment Modeling of $[11C]$ -5-Hydroxy-L-Tryptophan for Positron Emission Tomography Assessment of Serotonin Synthesis in Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1352-1366.	4.3	12
60	Depthâ€dependence of visual signals in the human superior colliculus at 9.4 T. Human Brain Mapping, 2017, 38, 574-587.	3.6	11
61	In-vivo quantitative structural imaging of the human midbrain and the superior colliculus at 9.4T. Neurolmage, 2018, 177, 117-128.	4.2	11
62	Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Frontiers in Neural Circuits, 2021, 15, 785603.	2.8	11
63	Perception is associated with the brain's metabolic response to sensory stimulation. ELife, 2022, 11, .	6.0	11
64	T2-Pseudonormalization and Microstructural Characterization in Advanced Stages of Late-infantile Metachromatic Leukodystrophy. Clinical Neuroradiology, 2021, 31, 969-980.	1.9	10
65	Pulsed saturation of the standard two-pool model for magnetization transfer. Part II: The transition to steady state. Concepts in Magnetic Resonance, 2004, 21A, 50-62.	1.3	9
66	Phaseâ€based masking for quantitative susceptibility mapping of the human brain at 9. <scp>4T</scp> . Magnetic Resonance in Medicine, 2022, 88, 2267-2276.	3.0	7
67	Quantification of magnetization transfer by sampling the transient signal using MT-prepared single-shot EPI. Concepts in Magnetic Resonance, 2003, 19A, 149-152.	1.3	6
68	Presynaptic serotonin imaging in social phobia using [3-11C]-5-hydroxy-L-tryptophan and PET. Neurolmage, 2001, 13, 1070.	4.2	5
69	Dysfunction of a Structurally Normal Motor Pathway in a Brain Injury Patient as Revealed by Multimodal Integrated Techniques. Neurocase, 2006, 12, 232-235.	0.6	5
70	Developing formalinâ€based fixative agents for post mortem brain MRI at 9.4ÂT. Magnetic Resonance in Medicine, 2022, 87, 2481-2494.	3.0	5
71	Imaging nervous pathways with MR tractography. Radiologia Medica, 2006, 111, 268-283.	7.7	4
72	Depth relationships and measures of tissue thickness in dorsal midbrain. Human Brain Mapping, 2020, 41, 5083-5096.	3.6	4

#	Article	IF	Citations
73	Microvascular imaging of the unstained human superior colliculus using synchrotron-radiation phase-contrast microtomography. Scientific Reports, 2022, 12, .	3.3	4
74	Quantitative NumART2* mapping in functional MRI studies at 1.5 T. Magnetic Resonance Imaging, 2003, 21, 1241-1249.	1.8	3
75	High-Field Neuroimaging in Traumatic Brain Injury. , 2006, , 169-176.		3
76	High-Field Neuroimaging in Parkinson's Disease. , 2006, , 194-200.		3
77	A highly sensitive radial diffusion measurement method for white matter tract investigation. Magnetic Resonance Imaging, 2009, 27, 519-530.	1.8	2
78	Phase Variations in fMRI Time Series Analysis: Friend or Foe?., 0, , .		2
79	Quantitative Susceptibility Mapping of the Basal Ganglia and Thalamus at 9.4 Tesla. Frontiers in Neuroanatomy, 2021, 15, 725731.	1.7	2
80	Multiâ€echo gradientâ€recalledâ€echo phase unwrapping using a Nyquist sampled virtual echo train in the presence of highâ€field gradients. Magnetic Resonance in Medicine, 2021, 86, 2220-2233.	3.0	1
81	High-Field 3 T Imaging of Alzheimer Disease. , 2006, , 201-207.		1
82	E07 Progressive Iron Accumulation In Huntington Disease Basal Ganglia: A Longitudinal Study. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, A37-A38.	1.9	0
83	Physics of Hybrid Imaging. , 2016, , 3-12.		0
84	[IOO4] Diffusion-weighted MRI: Techniques, applications and challenges in oncology. Physica Medica, 2018, 52, 2.	0.7	0
85	Nerve Pathways with MR Tractography. , 2006, , 79-90.		0