Jian-Hua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophilic Cu ₉ S ₅ Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells <i>in Vivo</i> . ACS Nano, 2011, 5, 9761-9771.	7.3	1,155
2	Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta, 2018, 999, 13-26.	2.6	489
3	Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells. Journal of Immunology, 2007, 178, 6867-6875.	0.4	373
4	Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosensors and Bioelectronics, 2016, 85, 68-75.	5.3	309
5	In Situ Growth of Silver Nanoparticles on Graphene Quantum Dots for Ultrasensitive Colorimetric Detection of H ₂ O ₂ and Glucose. Analytical Chemistry, 2014, 86, 6689-6694.	3.2	295
6	New Insight into Molecular Interactions of Imidazolium Ionic Liquids with Bovine Serum Albumin. Journal of Physical Chemistry B, 2011, 115, 12306-12314.	1.2	221
7	The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon, 2013, 55, 343-349.	5.4	200
8	Laponite Nanodisks as an Efficient Platform for Doxorubicin Delivery to Cancer Cells. Langmuir, 2013, 29, 5030-5036.	1.6	169
9	Smart DNA Machine for Carcinoembryonic Antigen Detection by Exonuclease III-Assisted Target Recycling and DNA Walker Cascade Amplification. Analytical Chemistry, 2017, 89, 9292-9298.	3.2	157
10	Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B, 2018, 6, 3219-3234.	2.9	155
11	Selective Adsorption and Efficient Removal of Phosphate from Aqueous Medium with Graphene–Lanthanum Composite. ACS Sustainable Chemistry and Engineering, 2016, 4, 1296-1302.	3.2	153
12	Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. Journal of Materials Chemistry B, 2016, 4, 387-393.	2.9	143
13	Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2017, 248, 374-384.	4.0	132
14	Selective extraction/isolation of hemoglobin with ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate (BtmsimPF6). Talanta, 2008, 75, 1270-1278.	2.9	123
15	Graphene Quantum Dot/Silver Nanoparticle Hybrids with Oxidase Activities for Antibacterial Application. ACS Biomaterials Science and Engineering, 2017, 3, 313-321.	2.6	123
16	Atmosphericâ€Pressure Dielectricâ€Barrier Discharge as a Radiation Source for Optical Emission Spectrometry. Angewandte Chemie - International Edition, 2008, 47, 7909-7912.	7.2	114
17	Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. Journal of Materials Chemistry B, 2016, 4, 7130-7137.	2.9	109
18	Graphene Oxide–Rare Earth Metal–Organic Framework Composites for the Selective Isolation of Hemoglobin. ACS Applied Materials & Interfaces, 2014, 6, 10196-10204.	4.0	106

#	Article	IF	CITATIONS
19	A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta, 2017, 166, 87-92.	2.9	102
20	Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC - Trends in Analytical Chemistry, 2015, 66, 90-102.	5.8	101
21	Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Applied Materials & Interfaces, 2015, 7, 16609-16616.	4.0	100
22	Assay of Biothiols by Regulating the Growth of Silver Nanoparticles with C-Dots as Reducing Agent. Analytical Chemistry, 2014, 86, 5002-5008.	3.2	99
23	Surface Assembly of Graphene Oxide Nanosheets on SiO ₂ Particles for the Selective Isolation of Hemoglobin. Chemistry - A European Journal, 2011, 17, 4864-4870.	1.7	97
24	Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon, 2017, 114, 324-333.	5.4	97
25	Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. Nanoscale, 2018, 10, 12788-12796.	2.8	97
26	State-of-the-art advances of copper-based nanostructures in the enhancement of chemodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 250-266.	2.9	92
27	Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging. ACS Applied Materials & Interfaces, 2018, 10, 7901-7909.	4.0	91
28	An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. Journal of Materials Chemistry B, 2015, 3, 9109-9114.	2.9	85
29	Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 105-112.	2.9	82
30	Three-Dimensional DNA Nanomachine Biosensor by Integrating DNA Walker and Rolling Machine Cascade Amplification for Ultrasensitive Detection of Cancer-Related Gene. Analytical Chemistry, 2020, 92, 11111-11118.	3.2	78
31	Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: from the mechanism to application in intracellular pH imaging. Nanoscale, 2018, 10, 22484-22492.	2.8	75
32	Protein-Stabilized Gadolinium Oxide-Gold Nanoclusters Hybrid for Multimodal Imaging and Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 6941-6949.	4.0	73
33	Preparation of Excitationâ€Independent Photoluminescent Graphene Quantum Dots with Visibleâ€Light Excitation/Emission for Cell Imaging. Chemistry - A European Journal, 2013, 19, 15918-15923.	1.7	71
34	Autonomous DNA nanomachine based on cascade amplification of strand displacement and DNA walker for detection of multiple DNAs. Biosensors and Bioelectronics, 2018, 105, 159-165.	5.3	70
35	Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta, 2017, 168, 269-278.	2.9	68
36	The development of a miniature atomic fluorescence spectrometric system in a lab-on-valve for mercury determination. Journal of Analytical Atomic Spectrometry, 2007, 22, 650.	1.6	66

#	Article	IF	CITATIONS
37	Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today, 2020, 35, 101005.	6.2	65
38	A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis. Journal of Analytical Atomic Spectrometry, 2008, 23, 493.	1.6	64
39	Highly Sensitive Detection of MicroRNA-21 with ICPMS via Hybridization Accumulation of Upconversion Nanoparticles. Analytical Chemistry, 2018, 90, 12116-12122.	3.2	64
40	Tunable Organelle Imaging by Rational Design of Carbon Dots and Utilization of Uptake Pathways. ACS Nano, 2021, 15, 14465-14474.	7.3	64
41	Mercury Speciation with Fluorescent Gold Nanocluster as a Probe. Analytical Chemistry, 2018, 90, 6945-6951.	3.2	63
42	Polyhedral Oligomeric Silsesquioxane Polymer-Caged Silver Nanoparticle as a Smart Colorimetric Probe for the Detection of Hydrogen Sulfide. Analytical Chemistry, 2017, 89, 1346-1352.	3.2	62
43	Fabrication of magnetic Fe3O4@metal organic framework@covalent organic framework composite and its selective separation of trace copper. Applied Surface Science, 2020, 530, 147254.	3.1	62
44	Nanozyme Sensor Array Plus Solvent-Mediated Signal Amplification Strategy for Ultrasensitive Ratiometric Fluorescence Detection of Exosomal Proteins and Cancer Identification. Analytical Chemistry, 2021, 93, 9002-9010.	3.2	61
45	lonic liquid–polyvinyl chloride ionomer for highly selective isolation of basic proteins. Talanta, 2010, 81, 637-642.	2.9	60
46	Fluorescent TPA@GQDs Probe for Sensitive Assay and Quantitative Imaging of Hydroxyl Radicals in Living Cells. ACS Applied Materials & Interfaces, 2018, 10, 5853-5861.	4.0	60
47	Ultrasensitive Determination of Tetrabromobisphenol A by Covalent Organic Framework Based Solid Phase Microextraction Coupled with Constant Flow Desorption Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 772-775.	3.2	60
48	Zn-based metal organic framework-covalent organic framework composites for trace lead extraction and fluorescence detection of TNP. Journal of Hazardous Materials, 2021, 411, 125021.	6.5	60
49	In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy. Journal of Materials Chemistry B, 2013, 1, 2582.	2.9	58
50	SERS–Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles. ACS Applied Materials & Interfaces, 2017, 9, 39699-39707.	4.0	58
51	A Highly Fluorescent Hydrophilic Ionic Liquid as a Potential Probe for the Sensing of Biomacromolecules. Journal of Physical Chemistry B, 2011, 115, 1524-1530.	1.2	57
52	Mutual Benefit between Cu(II) and Polydopamine for Improving Photothermal–Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 38127-38137.	4.0	56
53	A Smartphone Optical Device for Point-of-Care Testing of Glucose and Cholesterol Using Ag NPs/UiO-66-NH ₂ -Based Ratiometric Fluorescent Probe. Analytical Chemistry, 2021, 93, 16240-16247.	3.2	56
54	Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B: Chemical, 2018, 268, 61-69.	4.0	55

#	Article	IF	CITATIONS
55	Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging. Talanta, 2018, 181, 278-285.	2.9	55
56	Multichannel fluorescent sensor array for discrimination of thiols using carbon dot–metal ion pairs. Sensors and Actuators B: Chemical, 2018, 266, 553-560.	4.0	55
57	Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Mikrochimica Acta, 2017, 184, 1109-1116.	2.5	51
58	Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2017, 32, 2118-2126.	1.6	51
59	Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Analytica Chimica Acta, 2019, 1091, 69-75.	2.6	51
60	A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale, 2019, 11, 6377-6383.	2.8	50
61	Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale, 2020, 12, 6852-6860.	2.8	50
62	Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor. Sensors and Actuators B: Chemical, 2018, 257, 228-236.	4.0	49
63	Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. Journal of Materials Chemistry B, 2019, 7, 6742-6750.	2.9	49
64	A 2D porous Fe ₂ O ₃ /graphitic-C ₃ N ₄ /graphene ternary nanocomposite with multifunctions of catalytic hydrogenation, chromium(<scp>vi</scp>) adsorption and detoxification. Journal of Materials Chemistry A, 2017, 5, 3447-3455.	5.2	48
65	Boronic acid functionalized g-C ₃ N ₄ nanosheets for ultrasensitive and selective sensing of glycoprotein in the physiological environment. Nanoscale, 2018, 10, 4913-4920.	2.8	48
66	Supported carbon dots serve as high-performance adsorbent for the retention of trace cadmium. Talanta, 2018, 180, 18-24.	2.9	48
67	Integral Multielement Signals by DNA-Programmed UCNP–AuNP Nanosatellite Assemblies for Ultrasensitive ICP–MS Detection of Exosomal Proteins and Cancer Identification. Analytical Chemistry, 2021, 93, 6437-6445.	3.2	48
68	Confinement of AuAg NCs in a Pomegranate-Type Silica Architecture for Improved Copper Ion Sensing and Imaging. ACS Applied Materials & Interfaces, 2019, 11, 21150-21158.	4.0	47
69	A pH-responsive soluble polymer-based homogeneous system for fast and highly efficient N-glycoprotein/glycopeptide enrichment and identification by mass spectrometry. Chemical Science, 2015, 6, 4234-4241.	3.7	46
70	Extraction, purification and identification of bacterial signal molecules based on <i>N</i> â€acyl homoserine lactones. Microbial Biotechnology, 2011, 4, 479-490.	2.0	45
71	Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging. Langmuir, 2016, 32, 12221-12229.	1.6	45
72	Ultrasensitive Colorimetric Chromium Chemosensor Based on Dye Color Switching under the Cr(VI)-Stimulated Au NPs Catalytic Activity. Analytical Chemistry, 2019, 91, 5346-5353.	3.2	45

#	Article	IF	CITATIONS
73	Europium–Pyridinedicarboxylate–Adenine Light-Up Fluorescence Nanoprobes for Selective Detection of Phosphate in Biological Fluids. ACS Applied Materials & Interfaces, 2020, 12, 22593-22600.	4.0	45
74	Nickel chelating functionalization of graphene composite for metal affinity membrane isolation of lysozyme. Journal of Materials Chemistry B, 2013, 1, 810-818.	2.9	44
75	Chromium(III) Binding Phage Screening for the Selective Adsorption of Cr(III) and Chromium Speciation. ACS Applied Materials & amp; Interfaces, 2015, 7, 21287-21294.	4.0	44
76	Nano Copper Oxide-Incorporated Mesoporous Carbon Composite as Multimode Adsorbent for Selective Isolation of Hemoglobin. ACS Applied Materials & amp; Interfaces, 2015, 7, 5116-5123.	4.0	43
77	A Novel Three-Dimensional Nanosensing Array for the Discrimination of Sulfur-Containing Species and Sulfur Bacteria. Analytical Chemistry, 2019, 91, 6012-6018.	3.2	43
78	Ratiometric 3D DNA Machine Combined with Machine Learning Algorithm for Ultrasensitive and High-Precision Screening of Early Urinary Diseases. ACS Nano, 2021, 15, 19522-19534.	7.3	43
79	Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent. Nanotechnology, 2015, 26, 195703.	1.3	42
80	M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta, 2021, 221, 121668.	2.9	42
81	A reverse microemulsion of water/AOT/1-butyl-3-methylimidazolium hexafluorophosphate for selective extraction of hemoglobin. Separation and Purification Technology, 2008, 64, 154-159.	3.9	41
82	Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry. Analytical Chemistry, 2015, 87, 1366-1372.	3.2	41
83	A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Analytical and Bioanalytical Chemistry, 2017, 409, 1797-1803.	1.9	41
84	Hollow Copper Sulfide Nanosphere–Doxorubicin/Graphene Oxide Core–Shell Nanocomposite for Photothermo-chemotherapy. ACS Biomaterials Science and Engineering, 2017, 3, 3230-3235.	2.6	41
85	High-Throughput/High-Precision Sampling of Single Cells into ICP-MS for Elucidating Cellular Nanoparticles. Analytical Chemistry, 2018, 90, 14543-14550.	3.2	41
86	Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination. Analytical Chemistry, 2016, 88, 4192-4195.	3.2	40
87	Analysis of the Distribution Pattern of Chromium Species in Single Cells. Analytical Chemistry, 2016, 88, 12437-12444.	3.2	40
88	Suspension Array of Ionic Liquid or Ionic Liquid–Quantum Dots Conjugates for the Discrimination of Proteins and Bacteria. Analytical Chemistry, 2015, 87, 10902-10909.	3.2	39
89	Zwitterionic poly(sulfobetaine methacrylate)s in water: from upper critical solution temperature (UCST) to lower critical solution temperature (LCST) with increasing length of one alkyl substituent on the nitrogen atom. Polymer Chemistry, 2018, 9, 5257-5261.	1.9	39
90	Core–Corona Magnetic Nanospheres Functionalized with Zwitterionic Polymer Ionic Liquid for Highly Selective Isolation of Glycoprotein. Biomacromolecules, 2018, 19, 53-61.	2.6	38

#	Article	IF	CITATIONS
91	Dual-Multivalent-Aptamer-Conjugated Nanoprobes for Superefficient Discerning of Single Circulating Tumor Cells in a Microfluidic Chip with Inductively Coupled Plasma Mass Spectrometry Detection. ACS Applied Materials & Interfaces, 2021, 13, 43668-43675.	4.0	38
92	Live HeLa Cells Preconcentrate and Differentiate Inorganic Arsenic Species. Analytical Chemistry, 2009, 81, 1291-1296.	3.2	37
93	Placeholder Strategy with Upconversion Nanoparticlesâ ° Eriochrome Black T Conjugate for a Colorimetric Assay of an Anthrax Biomarker. Analytical Chemistry, 2019, 91, 12094-12099.	3.2	37
94	Oriented Assembly of Gold Nanoparticles with Freezingâ€Driven Surface DNA Manipulation and Its Application in SERSâ€Based MicroRNA Assay. Small Methods, 2019, 3, 1900017.	4.6	37
95	The regulation of hydrophilicity and hydrophobicity of carbon dots via a one-pot approach. Journal of Materials Chemistry B, 2015, 3, 6013-6018.	2.9	36
96	Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release. Journal of Materials Chemistry B, 2016, 4, 5178-5184.	2.9	36
97	Polymeric Ionic Liquid-Based Fluorescent Amphiphilic Block Copolymer Micelle for Selective and Sensitive Detection of <i>p</i> -Phenylenediamine. ACS Applied Materials & Interfaces, 2018, 10, 43049-43056.	4.0	36
98	Inertial-Force-Assisted, High-Throughput, Droplet-Free, Single-Cell Sampling Coupled with ICP-MS for Real-Time Cell Analysis. Analytical Chemistry, 2020, 92, 6604-6612.	3.2	36
99	Arsenic preconcentration viasolid phase extraction and speciation by HPLC-gradient hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 133-140.	1.6	34
100	Magnetic Nanospheres Encapsulated by Mesoporous Copper Oxide Shell for Selective Isolation of Hemoglobin. ACS Applied Materials & amp; Interfaces, 2016, 8, 29734-29741.	4.0	34
101	In Situ Generation of Prussian Blue by MIL-53 (Fe) for Point-of-Care Testing of Butyrylcholinesterase Activity Using a Portable High-Throughput Photothermal Device. Analytical Chemistry, 2020, 92, 14806-14813.	3.2	34
102	A three-dimensional amylopectin-reduced graphene oxide framework for efficient adsorption and removal of hemoglobin. Journal of Materials Chemistry B, 2015, 3, 983-989.	2.9	33
103	Intracellular Zinc Quantification by Fluorescence Imaging with a FRET System. Analytical Chemistry, 2019, 91, 4157-4163.	3.2	33
104	Gold Nanoclusters/Iron Oxyhydroxide Platform for Ultrasensitive Detection of Butyrylcholinesterase. Analytical Chemistry, 2019, 91, 15866-15872.	3.2	33
105	CuS@PDA–FA nanocomposites: a dual stimuli-responsive DOX delivery vehicle with ultrahigh loading level for synergistic photothermal–chemotherapies on breast cancer. Journal of Materials Chemistry B, 2020, 8, 1396-1404.	2.9	33
106	Selenocarrageenan-inspired hybrid graphene hydrogel as recyclable adsorbent for efficient scavenging of dyes and Hg2+ in water environment. Journal of Colloid and Interface Science, 2019, 540, 572-578.	5.0	32
107	β yclodextrinâ€Decorated Carbon Dots Serve as Nanocarriers for Targeted Drug Delivery and Controlled Release. ChemNanoMat, 2019, 5, 479-487.	1.5	32
108	One-Step Synthesis of Carbon Nanoparticles Capable of Long-Term Tracking Lipid Droplet for Real-Time Monitoring of Lipid Catabolism and Pharmacodynamic Evaluation of Lipid-Lowering Drugs. Analytical Chemistry, 2021, 93, 5284-5290.	3.2	32

#	Article	IF	CITATIONS
109	Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. Journal of Hazardous Materials, 2022, 425, 127987.	6.5	32
110	A Spiral-Helix (3D) Tubing Array That Ensures Ultrahigh-Throughput Single-Cell Sampling. Analytical Chemistry, 2019, 91, 15826-15832.	3.2	31
111	Ionic liquid mediated carbon dots: Preparations, properties and applications. TrAC - Trends in Analytical Chemistry, 2019, 119, 115638.	5.8	31
112	Room-temperature synthesis of fluorescent carbon-based nanoparticles and their application in multidimensional sensing. Sensors and Actuators B: Chemical, 2019, 288, 749-756.	4.0	31
113	g-C ₃ N ₄ nanosheet-based ratiometric fluorescent probes for the amplification and imaging of miRNA in living cells. Journal of Materials Chemistry B, 2019, 7, 7566-7573.	2.9	31
114	Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2010, 396, 1773-1779.	1.9	30
115	A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Mikrochimica Acta, 2017, 184, 1037-1044.	2.5	30
116	Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor. Mikrochimica Acta, 2018, 185, 205.	2.5	30
117	Alternating-Current-Driven Microplasma for Multielement Excitation and Determination by Optical-Emission Spectrometry. Analytical Chemistry, 2018, 90, 10607-10613.	3.2	30
118	Amplification Strategy of Silver Nanoclusters with a Satellite-Nanostructure for Substrate-Free Assay of Alkaline Phosphatase by ICP-MS. Analytical Chemistry, 2020, 92, 3769-3774.	3.2	30
119	Development of a miniature dielectric barrier discharge–optical emission spectrometric system for bromide and bromate screening in environmental water samples. Analytica Chimica Acta, 2014, 809, 30-36.	2.6	29
120	Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer. Nanotechnology, 2016, 27, 355102.	1.3	29
121	Biomolecule-mediated chiral nanostructures: a review of chiral mechanism and application. Advances in Colloid and Interface Science, 2021, 289, 102376.	7.0	29
122	Magnetic Nanohybrids Loaded with Bimetal Core–Shell–Shell Nanorods for Bacteria Capture, Separation, and Nearâ€Infrared Photothermal Treatment. Chemistry - A European Journal, 2015, 21, 6582-6589.	1.7	28
123	A novel "modularized―optical sensor for pH monitoring in biological matrixes. Biosensors and Bioelectronics, 2018, 109, 150-155.	5.3	28
124	Microwave-triggered ionic liquid-based hydrogel dressing with excellent hyperthermia and transdermal drug delivery performance. Chemical Engineering Journal, 2022, 429, 131590.	6.6	28
125	lodine excitation in a dielectric barrier discharge micro-plasma and its determination by optical emission spectrometry. Analyst, The, 2013, 138, 1719.	1.7	27
126	A Three-Dimensional Porous Organic Framework for Highly Selective Capture of Mercury and Copper Ions. ACS Applied Polymer Materials, 2019, 1, 2797-2806.	2.0	27

#	Article	IF	CITATIONS
127	Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia. Analyst, The, 2011, 136, 2552.	1.7	26
128	A hybrid of carbon dots with 4-chloro-7-nitro-2,1,3-benzoxadiazole for selective detection of p-phenylenediamine. Environmental Science: Nano, 2017, 4, 1037-1044.	2.2	26
129	Functionalized magnetic composites based on the aptamer serve as novel bio-adsorbent for the separation and preconcentration of trace lead. Talanta, 2019, 203, 210-219.	2.9	26
130	Protein Corona-Triggered Catalytic Inhibition of Insufficient POSS Polymer-Caged Gold Nanoparticles for Sensitive Colorimetric Detection of Metallothioneins. Analytical Chemistry, 2020, 92, 2080-2087.	3.2	26
131	Discrimination of antibiotic-resistant Gram-negative bacteria with a novel 3D nano sensing array. Chemical Communications, 2020, 56, 1717-1720.	2.2	26
132	Recent advances in single-cell ultra-trace analysis. TrAC - Trends in Analytical Chemistry, 2020, 127, 115886.	5.8	26
133	Red-emission hydrophobic porphyrin structure carbon dots linked with transferrin for cell imaging. Talanta, 2020, 217, 121014.	2.9	26
134	An Integrated Strategy for Mass Spectrometry-Based Multiomics Analysis of Single Cells. Analytical Chemistry, 2021, 93, 14059-14067.	3.2	26
135	Acetylcholinesterase Activity Monitoring and Natural Anti-neurological Disease Drug Screening via Rational Design of Deep Eutectic Solvents and CeO ₂ -Co(OH) ₂ Nanosheets. Analytical Chemistry, 2022, 94, 5970-5979.	3.2	26
136	Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins. Analytical and Bioanalytical Chemistry, 2013, 405, 8799-8806.	1.9	25
137	An octamolybdate-metal organic framework hybrid for the efficient adsorption of histidine-rich proteins. Journal of Materials Chemistry B, 2016, 4, 6812-6819.	2.9	25
138	Aptamer-anchored di-polymer shell-capped mesoporous carbon as a drug carrier for bi-trigger targeted drug delivery. Journal of Materials Chemistry B, 2017, 5, 6882-6889.	2.9	25
139	Precisely Tuning LSPR Property via "Peptide-Encoded―Morphological Evolution of Gold Nanorods for Quantitative Visualization of Enzyme Activity. Analytical Chemistry, 2020, 92, 1395-1401.	3.2	25
140	Hybrids of Upconversion Nanoparticles and Silver Nanoclusters Ensure Superior Bactericidal Capability <i>via</i> Combined Sterilization. ACS Applied Materials & Interfaces, 2020, 12, 51285-51292.	4.0	25
141	ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes. Analytical Chemistry, 2021, 93, 11540-11546.	3.2	25
142	Recent Advances in Nanomaterials for Analysis of Trace Heavy Metals. Critical Reviews in Analytical Chemistry, 2021, 51, 353-372.	1.8	24
143	Construction of Novel Nanocomposites (Cu-MOF/GOD@HA) for Chemodynamic Therapy. Nanomaterials, 2021, 11, 1843.	1.9	24
144	One-pot synthesis of N,N-bis[2-methylbutyl] imidazolium hexafluorophosphate–TiO2 nanocomposites and application for protein isolation. Journal of Materials Chemistry, 2011, 21, 14857.	6.7	23

#	Article	IF	CITATIONS
145	Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry. Analytical Chemistry, 2017, 89, 5810-5817.	3.2	23
146	In situ growth of gold nanoparticles on Hg ²⁺ -binding M13 phages for mercury sensing. Nanoscale, 2017, 9, 16728-16734.	2.8	23
147	Counting and Sizing of Single Vesicles/Liposomes by Electrochemical Events. ChemElectroChem, 2018, 5, 2954-2962.	1.7	23
148	ZrO2 doped magnetic mesoporous polyimide for the efficient enrichment of phosphopeptides. Talanta, 2018, 188, 385-392.	2.9	23
149	Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. TrAC - Trends in Analytical Chemistry, 2019, 120, 115650.	5.8	23
150	Poly(ionic liquid)-Gated CuCo ₂ S ₄ for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2020, 12, 9000-9007.	4.0	23
151	Membrane-Activated Fluorescent Probe for High-Fidelity Imaging of Mitochondrial Membrane Potential. ACS Sensors, 2021, 6, 4009-4018.	4.0	23
152	Functionalization of mesoporous organosilica nanocarrier for pH/glutathione dual-responsive drug delivery and imaging of cancer therapy process. Talanta, 2018, 177, 203-211.	2.9	22
153	Unusual Selective Response to Glycoprotein over Sugar Facilitates Ultrafast Universal Fluorescent Immunoassay of Biomarkers. Analytical Chemistry, 2020, 92, 5540-5545.	3.2	22
154	Dielectric barrier discharge-optical emission spectrometry for the simultaneous determination of halogens. Journal of Analytical Atomic Spectrometry, 2016, 31, 398-405.	1.6	21
155	Copper-Decorated Titanate Nanosheets: Novel Homogeneous Monolayers with a Superior Capacity for Selective Isolation of Hemoglobin. ACS Applied Materials & Interfaces, 2017, 9, 28273-28280.	4.0	21
156	Monolayer polymerization of polyhedral oligomeric silsesquioxane on graphene oxide for highly efficient adsorption of β-lactoglobulin. Carbon, 2017, 122, 194-201.	5.4	21
157	Regulating the properties of carbon dots via a solvent-involved molecule fusion strategy for improved sensing selectivity. Analytica Chimica Acta, 2019, 1088, 107-115.	2.6	21
158	Single cell analysis for elucidating cellular uptake and transport of cobalt curcumin complex with detection by time-resolved ICPMS. Analytica Chimica Acta, 2019, 1066, 13-20.	2.6	21
159	A miniaturized photoacoustic device with laptop readout for point-of-care testing of blood glucose. Talanta, 2020, 209, 120527.	2.9	21
160	Polymeric ionic liquid modified reduced graphene oxide as adsorbent for highly selective isolation of acidic protein. RSC Advances, 2014, 4, 61936-61943.	1.7	20
161	Advances in dielectric barrier discharge-optical emission spectrometry for the analysis of trace species. Analytical Methods, 2015, 7, 1660-1666.	1.3	20
162	Novel Ti ⁴⁺ -Chelated Polyoxometalate/Polydopamine Composite Microspheres for Highly Selective Isolation and Enrichment of Phosphoproteins. ACS Applied Materials & Interfaces, 2019, 11, 37471-37478.	4.0	20

#	Article	IF	CITATIONS
163	Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale, 2019, 11, 9362-9368.	2.8	20
164	MoS ₂ –Covalent Organic Framework Composite as a Bifunctional Supporter for the Determination of Trace Nickel by Photochemical Vapor Generation–Microplasma Optical Emission Spectrometry. Analytical Chemistry, 2022, 94, 2288-2297.	3.2	20
165	A novel organic–inorganic hybrid polyoxometalate for the selective adsorption/isolation of β-lactoglobulin. Journal of Materials Chemistry B, 2015, 3, 6964-6970.	2.9	19
166	Preparation of a cobalt mono-substituted silicotungstic acid doped with aniline for the selective adsorption of ovalbumin. Journal of Materials Chemistry B, 2015, 3, 4363-4369.	2.9	19
167	One step preparation of proton-functionalized photoluminescent graphitic carbon nitride and its sensing applications. RSC Advances, 2016, 6, 98893-98898.	1.7	19
168	Dual Functional Core–Shell Fluorescent Ag ₂ S@Carbon Nanostructure for Selective Assay of <i>E. coli</i> O157:H7 and Bactericidal Treatment. ACS Sensors, 2017, 2, 371-378.	4.0	19
169	Dual-signal model array sensor based on GQDs/AuNPs system for sensitive protein discrimination. Analytica Chimica Acta, 2017, 992, 105-111.	2.6	19
170	A triarylphosphine–trimethylpiperidine reagent for the one-step derivatization and enrichment of protein post-translational modifications and identification by mass spectrometry. Chemical Communications, 2018, 54, 13790-13793.	2.2	19
171	Immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide for selective extraction of phosphoproteins. Mikrochimica Acta, 2018, 185, 553.	2.5	19
172	DNA-fueled target recycling-induced two-leg DNA walker for amplified electrochemical detection of nucleic acid. Talanta, 2018, 188, 685-690.	2.9	19
173	Sizing Single Particles at the Orifice of a Nanopipette. ACS Sensors, 2020, 5, 2351-2358.	4.0	19
174	The up-to-date strategies for the isolation and manipulation of single cells. Talanta, 2020, 218, 121147.	2.9	19
175	<i>In situ</i> synthesis of a GO/COFs composite with enhanced adsorption performance for organic pollutants in water. Environmental Science: Nano, 2022, 9, 554-567.	2.2	19
176	Kadsura-Shaped Covalent–Organic Framework Nanostructures for the Sensitive Detection and Removal of 2,4,6-Trinitrophenol. ACS Applied Nano Materials, 2022, 5, 6422-6429.	2.4	19
177	Polyoxometalate-Coated Magnetic Nanospheres for Highly Selective Isolation of Immunoglobulin G. ACS Applied Materials & Interfaces, 2018, 10, 21876-21882.	4.0	18
178	PEGylation of metal-organic framework for selective isolation of glycoprotein immunoglobulin G. Talanta, 2020, 208, 120433.	2.9	18
179	Photoacoustic-Based Miniature Device with Smartphone Readout for Point-of-Care Testing of Uric Acid. Analytical Chemistry, 2020, 92, 15699-15704.	3.2	18
180	Real-time monitoring of intracellular pH in live cells with fluorescent ionic liquid. Analytica Chimica Acta, 2020, 1111, 132-138.	2.6	18

#	Article	IF	CITATIONS
181	"Insert-and-Go―Activated Carbon Electrode Tip for Heavy Metal Capture and In Situ Analysis by Microplasma Optical Emission Spectrometry. Analytical Chemistry, 2021, 93, 6262-6269.	3.2	18
182	Two-Dimensional Cytometry Platform for Single-Particle/Cell Analysis with Laser-Induced Fluorescence and ICP–MS. Analytical Chemistry, 2021, 93, 8203-8209.	3.2	18
183	Simultaneous and sensitive detection of multiple small biological molecules by microfluidic paper-based analytical device integrated with zinc oxide nanorods. Talanta, 2021, 232, 122499.	2.9	18
184	Gold nanocluster surface ligand exchange: An oxidative stress amplifier for combating multidrug resistance bacterial infection. Journal of Colloid and Interface Science, 2021, 602, 846-858.	5.0	18
185	Simultaneous metabolomics and proteomics analysis of plasma-derived extracellular vesicles. Analytical Methods, 2021, 13, 1930-1938.	1.3	18
186	Detection of HIV/HCV virus DNA with homogeneous DNA machine-triggered in situ formation of silver nanoclusters. Sensors and Actuators B: Chemical, 2022, 352, 131041.	4.0	18
187	Advances in the adsorption/enrichment of proteins/peptides by metal–organic frameworks-affinity adsorbents. TrAC - Trends in Analytical Chemistry, 2022, 153, 116627.	5.8	18
188	Acetaldehyde-modified-cystine as an enhanced fluorescent probe for intracellular glutathione imaging. Sensors and Actuators B: Chemical, 2018, 268, 264-269.	4.0	17
189	Discrimination and highly selective adsorption of phosphoproteins and glycoproteins with arginine-functionalized polyhedral oligomeric silsesquioxane frameworks. Journal of Materials Chemistry B, 2018, 6, 4116-4123.	2.9	17
190	β-Naphthothiazolium-based ratiometric fluorescent probe with ideal pKa for pH imaging in mitochondria of living cells. Talanta, 2021, 232, 122475.	2.9	17
191	Effects of <i>N</i> -Substituents on the Solution Behavior of Poly(sulfobetaine methacrylate)s in Water: Upper and Lower Critical Solution Temperature Transitions. ACS Applied Polymer Materials, 2021, 3, 867-878.	2.0	17
192	Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath. Talanta, 2016, 146, 603-608.	2.9	16
193	Dual functional AgNPs-M13 phage composite serves as antibacterial film and sensing probe for monitoring the corrosion of chromium-containing dental alloys. Chinese Chemical Letters, 2020, 31, 145-149.	4.8	16
194	Boronic acid modified polyoxometalate-alginate hybrid for the isolation of glycoproteins at neutral environment. Talanta, 2020, 210, 120620.	2.9	16
195	The anion of choline-based ionic liquids tailored interactions between ionic liquids and bovine serum albumin, MCF-7 cells, and bacteria. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111971.	2.5	16
196	Improving the biocompatibility of carbon nanodots for cell imaging. Talanta, 2016, 161, 54-61.	2.9	15
197	Probing pH variation in living cells and assaying hemoglobin in blood with nitrogen enriched carbon dots. Talanta, 2018, 188, 788-794.	2.9	15
198	Fe ³⁺ -Catalyzed low-temperature preparation of multicolor carbon polymer dots with the capability of distinguishing D ₂ O from H ₂ O. Chemical Communications, 2019, 55, 12467-12470.	2.2	15

#	Article	IF	CITATIONS
199	Assessment of antifungal effects of a novel compound from BurkholderiaÂcepacia against FusariumÂsolani by fluorescent staining. World Journal of Microbiology and Biotechnology, 2009, 25, 151-154.	1.7	14
200	Nonthermal optical emission spectrometry for simultaneous and direct determination of zinc, cadmium and mercury in spray. Analyst, The, 2018, 143, 930-935.	1.7	14
201	Facile synthesis of metal–organic framework-derived SiW12@Co3O4 and its peroxidase-like activity in colorimetric assay. Analyst, The, 2019, 144, 5455-5461.	1.7	14
202	Capping Ligand Size-Dependent LSPR Property Based on DNA Nanostructure-Mediated Morphological Evolution of Gold Nanorods for Ultrasensitive Visualization of Target DNA. Analytical Chemistry, 2020, 92, 7054-7061.	3.2	14
203	A Salt Stimulus-Responsive Nanohydrogel for Controlled Fishing Low-Density Lipoprotein with Superior Adsorption Capacity. ACS Applied Materials & Interfaces, 2021, 13, 4583-4592.	4.0	14
204	Label-Free Resistance Cytometry at the Orifice of a Nanopipette. Analytical Chemistry, 2021, 93, 2942-2949.	3.2	14
205	Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging. Sensors and Actuators B: Chemical, 2022, 357, 131376.	4.0	14
206	Green and catalyst-free preparation of triazinyl polyimide for the efficient adsorption of glycoproteins. RSC Advances, 2016, 6, 46002-46007.	1.7	13
207	Improving the adsorption capacity for ovalbumin by functional modification of aminated mesoporous silica nanoparticles with tryptophan. Journal of Materials Chemistry B, 2018, 6, 7703-7709.	2.9	13
208	The structure-activity relationship of hydrophilic carbon dots regulated by the nature of precursor ionic liquids. Journal of Colloid and Interface Science, 2019, 554, 722-730.	5.0	13
209	Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Analytica Chimica Acta, 2019, 1088, 72-78.	2.6	13
210	DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS Applied Materials & amp; Interfaces, 2019, 11, 36286-36295.	4.0	13
211	Boron-Modified Defect-Rich Molybdenum Disulfide Nanosheets: Reducing Nonspecific Adsorption and Promoting a High Capacity for Isolation of Immunoglobulin G. ACS Applied Materials & Interfaces, 2020, 12, 43273-43280.	4.0	13
212	Terbium doping of graphitic carbon nitride endows a highly sensitive ratiometric fluorescence assay of alkaline phosphatase. Chemical Communications, 2021, 57, 8746-8749.	2.2	13
213	A turn-on fluorescent probe via substitution-rearrangement for highly sensitive and discriminative detection of cysteine and its imaging in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120409.	2.0	13
214	Functionalized polyoxometalate microspheres ensure selective adsorption of phosphoproteins and glycoproteins. Chemical Communications, 2021, 57, 3367-3370.	2.2	13
215	Selective adsorption of hemoglobin with polyoxometalate-derived hybrid by solidification of super-lacunary phosphotungstate polyoxoanions. Talanta, 2016, 159, 23-28.	2.9	12
216	Sensitive Western-Blot Analysis of Azide-Tagged Protein Post Translational Modifications Using Thermoresponsive Polymer Self-Assembly. Analytical Chemistry, 2018, 90, 2186-2192.	3.2	12

#	Article	IF	CITATIONS
217	PECylated titanate nanosheets: hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. Nanoscale, 2018, 10, 12535-12542.	2.8	12
218	Polyoxometalate-functionalized macroporous microspheres for selective separation/enrichment of glycoproteins. Chemical Communications, 2020, 56, 9870-9873.	2.2	12
219	Carbon nitride nanoparticles as ultrasensitive fluorescent probes for the detection of α-glucosidase activity and inhibitor screening. Analyst, The, 2021, 146, 1016-1022.	1.7	12
220	Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sensors, 2021, 6, 2330-2338.	4.0	12
221	Ionic liquids enable the preparation of a copper-loaded gel with transdermal delivery function for wound dressings. Biomaterials Science, 2022, 10, 1041-1052.	2.6	12
222	Selective Isolation of Myosin Subfragment-1 with a DNA-Polyoxovanadate Bioconjugate. Bioconjugate Chemistry, 2017, 28, 2976-2984.	1.8	11
223	Pyridine boronic acid-polyoxometalate based porous hybrid for efficient depletion of high abundant glycoproteins in plasma. Journal of Materials Chemistry B, 2018, 6, 8196-8203.	2.9	11
224	A fluorescence imaging protocol for correlating intracellular free cationic copper to the total uptaken copper by live cells. Talanta, 2020, 220, 121355.	2.9	11
225	Ionic liquid modification of metal-organic framework endows high selectivity for phosphoproteins adsorption. Analytica Chimica Acta, 2021, 1147, 144-154.	2.6	11
226	Regulation of the adsorption selectivity of acidic or basic proteins using a polyoxometalate composite. Journal of Materials Chemistry B, 2017, 5, 750-756.	2.9	10
227	Porphyrin structure carbon dots under red light irradiation for bacterial inactivation. New Journal of Chemistry, 2020, 44, 18225-18232.	1.4	10
228	Ensuring high selectivity for preconcentration and detection of ultra-trace cadmium using a phage-functionalized metal–organic framework. Analyst, The, 2020, 145, 5280-5288.	1.7	10
229	Simultaneous detection and speciation of mono- and di-valent copper ions with a dual-channel fluorescent nanoprobe. Chemical Communications, 2020, 56, 15337-15340.	2.2	10
230	Boronic acid-containing carbon dots array for sensitive identification of glycoproteins and cancer cells. Chinese Chemical Letters, 2021, 32, 3043-3047.	4.8	10
231	Investigation on selenium and mercury interactions and the distribution patterns in mice organs with LA-ICP-MS imaging. Analytica Chimica Acta, 2021, 1182, 338941.	2.6	10
232	Sensitivity Dependence on the Crystal Forms of a Fluorescence Quencher for Silicon Quantum Dots and Its Use in Acetylcholinesterase Assay. Analytical Chemistry, 2021, 93, 14900-14906.	3.2	10
233	Biological cells in the speciation analysis of heavy metals. Analytical Methods, 2016, 8, 8251-8261.	1.3	9
234	Mercury speciation based on mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Analyst, The, 2020, 145, 5200-5205.	1.7	9

#	Article	IF	CITATIONS
235	A carbon-based polymer dot sensor for breast cancer detection using peripheral blood immunocytes. Chemical Communications, 2020, 56, 3050-3053.	2.2	9
236	A modular single-cell pipette microfluidic chip coupling to ETAAS and ICP-MS for single cell analysis. Chinese Chemical Letters, 2022, 33, 1373-1376.	4.8	9
237	Discrimination of pathogenic bacteria with boronic acid modified protonated g-C3N4 nanosheets at various pHs. Sensors and Actuators B: Chemical, 2021, 340, 129951.	4.0	9
238	Novel thiol-functionalized covalent organic framework-enabled ICP-MS measurement of ultra-trace metals in complex matrices. Journal of Analytical Atomic Spectrometry, 2022, 37, 157-164.	1.6	9
239	Metal–Organic Frameworks Encapsulating Carbon Dots Enable Fast Speciation of Mono- and Divalent Copper. Analytical Chemistry, 2022, 94, 2255-2262.	3.2	9
240	Reversible and Highly Ordered Biointerfaces for Efficient Capture and Nondestructive Release of Circulating Tumor Cells. Analytical Chemistry, 0, , .	3.2	9
241	A miniature liquid electrode discharge-optical emission spectrometric system integrating microelectrodialysis for potassium screening in serum. Journal of Analytical Atomic Spectrometry, 2017, 32, 1739-1745.	1.6	8
242	Complexes of magnetic nanospheres with amphiprotic polymer–Zn systems for the selective isolation of lactoferrin. Journal of Materials Chemistry B, 2018, 6, 5596-5603.	2.9	8
243	Chondroitin sulfate-functionalized 3D hierarchical flower-type mesoporous silica with a superior capacity for selective isolation of low density lipoprotein. Analytica Chimica Acta, 2020, 1104, 78-86.	2.6	8
244	A novel porous polymeric microsphere for the selective adsorption and isolation of conalbumin. Analytica Chimica Acta, 2021, 1148, 238176.	2.6	8
245	MnO2-graphene oxide hybrid nanomaterial with oxidase-like activity for ultrasensitive colorimetric detection of cancer cells. Analytical and Bioanalytical Chemistry, 2021, 413, 4451-4458.	1.9	8
246	"Switch-on―fluorescence sensing platform based on porphyrin metal-organic frameworks for rapid and specific detection of zinc ion. Analytical and Bioanalytical Chemistry, 2021, 413, 5161-5168.	1.9	8
247	Titanium dioxideâ€functionalized dendritic mesoporous silica nanoparticles for highly selective isolation of phosphoproteins. Journal of Separation Science, 2021, 44, 3618-3625.	1.3	8
248	Gold nanoclusters exert antibacterial effects against gram-negative bacteria by targeting thiol-redox homeostasis. Talanta, 2021, 234, 122618.	2.9	8
249	Immunolabeling lanthanide nanoparticles for alpha-fetoprotein measurement and cancer cells counting with detection of ICPâ~'MS. Analytica Chimica Acta, 2022, 1201, 339639.	2.6	8
250	The sensitive fluorescence assay of phosphates and alkaline phosphatase based on terbium nanocomplexes synthesized via ligand proportion regulation. Sensors and Actuators B: Chemical, 2022, 359, 131574.	4.0	8
251	Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. Langmuir, 2022, 38, 5542-5549.	1.6	8
252	Dual mode assay of glutathione with Tb-doped g-C3N4/MnO2 nanoconjugates as fluorescence probe and Mn as elemental target. Analytica Chimica Acta, 2022, 1221, 340100.	2.6	8

#	Article	IF	CITATIONS
253	A simple enzyme-assisted cascade amplification strategy for ultrasensitive and label-free detection of DNA. Analytical and Bioanalytical Chemistry, 2019, 411, 4569-4576.	1.9	7
254	Purification of hemoglobin by adsorption on nitrogen-doped flower-like carbon superstructures. Mikrochimica Acta, 2020, 187, 162.	2.5	7
255	A simple, one-pot and ultrasensitive DNA sensor via Exo III-Assisted target recycling and 3D DNA walker cascade amplification. Analytica Chimica Acta, 2021, 1147, 15-22.	2.6	7
256	Intracellular silver speciation by coupling capillary electrophoresis to ICP-MS integrating a high performance spiral flow spray chamber. Analytica Chimica Acta, 2021, 1166, 338540.	2.6	7
257	Rare-Earth Doping Graphitic Carbon Nitride Endows Distinctive Multiple Emissions with Large Stokes Shifts. CCS Chemistry, 2022, 4, 1990-1999.	4.6	7
258	Mitochondria-targeted ratiometric fluorescent imaging of cysteine. Analyst, The, 2021, 146, 4642-4648.	1.7	7
259	Aptamer-Based Cell Nucleus Imaging via Expansion Microscopy. Analytical Chemistry, 2022, 94, 6044-6049.	3.2	7
260	Study on emission quenching by 2,2,6,6-tetramethyl-1-piperidinyloxy free radical. Research on Chemical Intermediates, 2000, 26, 793-803.	1.3	6
261	Specific Isolation of Glycoproteins with Mesoporous Zirconiaâ€Polyoxometalate Hybrid. Proteomics, 2018, 18, e1700381.	1.3	6
262	M13 phage as network frame for the quantification of Pb2+ based on the Pb2+-induced in-situ growth of gold nanoparticles. Analytica Chimica Acta, 2019, 1073, 72-78.	2.6	6
263	Performing flow injection chromatography using a narrow open tubular column. Analytica Chimica Acta, 2020, 1109, 19-26.	2.6	6
264	Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions. Analytica Chimica Acta, 2021, 1183, 338973.	2.6	6
265	Aptamer/AuNPs encoders endow precise identification and discrimination of lipoprotein subclasses. Biosensors and Bioelectronics, 2022, 196, 113743.	5.3	6
266	Facile preparation of N,S-graphene oxide nanosheets as a fluorescence "off–on―sensing platform for sensitive detection of biothiols. New Journal of Chemistry, 2019, 43, 2790-2796.	1.4	5
267	An atomic fluorescence spectrometer for monitoring nitrogen nutrients via NO vapor generation. Analytica Chimica Acta, 2019, 1064, 17-24.	2.6	5
268	Iron-chelated thermoresponsive polymer brushes on bismuth titanate nanosheets for metal affinity separation of phosphoproteins. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111282.	2.5	5
269	Identification of intracellular cadmium transformation in HepG2 and MCF-7Âcells. Talanta, 2020, 218, 121065.	2.9	5
270	Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Analytical Chemistry, 2022, 94, 8187-8193.	3.2	5

#	Article	IF	CITATIONS
271	Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomaterials Science, 2021, 9, 3127-3135.	2.6	4
272	A Novel Pretreatment Device Integrating Magnetic-Assisted Dispersive Extraction and Ultrasonic Spray Separation for Speciation Analysis of Arsenic in Whole Blood by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Analytical Chemistry, 2021, 93, 10577-10583.	3.2	4
273	Effects of alkyl side-chain length on binding with bovine serum albumin, cytotoxicity, and antibacterial properties of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. Journal of Molecular Liquids, 2021, 339, 116835.	2.3	4
274	Imaging vicinal dithiol of arsenic-binding proteins in the mouse brain with amplification by gold nanocluster Au22(GSH)18. Chemical Communications, 2021, 57, 3103-3106.	2.2	4
275	Tailoring the Phase Transition and Luminescence Behaviors of a Poly(ionic liquid) to Ensure Visual Temperature Sensing. ACS Applied Polymer Materials, 2022, 4, 191-199.	2.0	4
276	Modulation of the binding ability to biomacromolecule, cytotoxicity and cellular imaging property for ionic liquid mediated carbon dots. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112552.	2.5	4
277	Cryogenic Laser Ablation in a Rapid Cooling Chamber Ensures Excellent Elemental Imaging in Fresh Biological Tissues. Analytical Chemistry, 2022, 94, 8547-8553.	3.2	4
278	Sensitive discrimination of glycoproteins and cell differentiation with an array sensing platform exploiting pyrene-derived amphiphile/surfactant assemblies. Chemical Communications, 2019, 55, 13673-13676.	2.2	3
279	Chondroitin sulfate-enriched hierarchical multichannel polydopamine nanoparticles with ultrahigh sorption capacity for separation of low-density lipoprotein. Journal of Materials Chemistry B, 2021, 9, 1980-1987.	2.9	3
280	A Miniaturized Long-Optical Path Atomic Absorption Spectrometer with Dielectric Barrier Discharge as Atomizer for Mercury and Methylmercury. Acta Chimica Sinica, 2013, 71, 1121.	0.5	3
281	CoOOH nanosheets ensure ratiometric fluorescence assay of acetylcholinesterase. Talanta, 2022, 249, 123664.	2.9	3
282	The concurrent enrichment of glycoproteins and phosphoproteins with polyoxometalate-covalent organic framework conjugate as the adsorbent. Journal of Chromatography A, 2022, 1675, 463183.	1.8	2
283	Exploiting arginine distributions for the selective and efficient depletion of arginine-rich plasma proteins. Chemical Communications, 2020, 56, 12375-12378.	2.2	0
284	Plasmon Resonance-Inspired Discriminator Unscrambles Lipoprotein Subtypes. Analyst, The, 0, , .	1.7	0
285	Simultaneous preconcentration and pre-column derivatization for rapid analysis of nitrilotriacetic acid in environmental waters by high performance liquid chromatography. Journal of	1.8	0