
Anne Bjorkman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden. Arctic Science, 2022, 8, 858-877.	2.3	13
2	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	2.3	7
3	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39
4	Annual air temperature variability and biotic interactions explain tundra shrub species abundance. Journal of Vegetation Science, 2021, 32, e13009.	2.2	11
5	A reflection on four impactful Ambio papers: The biotic perspective. Ambio, 2021, 50, 1145-1149.	5.5	1
6	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
7	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	12.8	56
8	Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio, 2020, 49, 678-692.	5.5	119
9	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
10	Winter in a warming Arctic. Nature Climate Change, 2020, 10, 1071-1073.	18.8	4
11	Landscape-scale forest loss as a catalyst of population and biodiversity change. Science, 2020, 368, 1341-1347.	12.6	91
12	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
13	Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2020, 2, 380-394.	3.7	139
14	Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 2020, 29, 925-943.	5.8	105
15	Arctic terrestrial biodiversity status and trends: A synopsis of science supporting the CBMP State of Arctic Terrestrial Biodiversity Report. Ambio, 2020, 49, 833-847.	5.5	21
16	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	7.8	67
17	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	18.8	447
18	The geography of biodiversity change in marine and terrestrial assemblages. Science, 2019, 366, 339-345.	12.6	385

Anne Bjorkman

#	Article	IF	CITATIONS
19	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
20	Species richness change across spatial scales. Oikos, 2019, 128, 1079-1091.	2.7	160
21	Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs, 2019, 89, e01351.	5.4	113
22	Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Global Change Biology, 2019, 25, 2258-2274.	9.5	52
23	Plant traits inform predictions of tundra responses to global change. New Phytologist, 2019, 221, 1742-1748.	7.3	70
24	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
25	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	7.8	79
26	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
27	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
28	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	5.8	57
29	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
30	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	5.8	289
31	Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 2017, 23, 2660-2671.	9.5	171
32	Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Global Change Biology, 2017, 23, 1540-1551.	9.5	63
33	Origins of food crops connect countries worldwide. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160792.	2.6	125
34	Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 2015, 21, 4651-4661.	9.5	129
35	Patterns of domestication in the Ethiopian oilâ€seed crop noug (Guizotia abyssinica). Evolutionary Applications, 2015, 8, 464-475.	3.1	16
36	Corrigendum to Elmendorfet al. (2012). Ecology Letters, 2014, 17, 260-260.	6.4	3

Anne Bjorkman

#	Article	IF	CITATIONS
37	Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the United States of America, 2014, 111, 4001-4006.	7.1	757
38	Ecological and Evolutionary Consequences of Experimental Warming in a High Arctic Tundra Ecosystem. Arctic, 2013, 66, .	0.4	1
39	Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 2012, 15, 164-175.	6.4	764
40	Defining Historical Baselines for Conservation: Ecological Changes Since European Settlement on Vancouver Island, Canada. Conservation Biology, 2010, 24, 1559-1568.	4.7	46
41	Environmentally biased fragmentation of oak savanna habitat on southeastern Vancouver Island, Canada. Biological Conservation, 2008, 141, 2576-2584.	4.1	42