Thomas Nestelberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221595/publications.pdf

Version: 2024-02-01

135	3,919	31	57
papers	citations	h-index	g-index
136	136	136	3349
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	0/2 h-Algorithm for Rapid Triage of Suspected Myocardial Infarction Using a Novel High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2022, 68, 303-312.	3.2	5
2	Factors associated with late presentation to the emergency department in patients complaining of chest pain. Patient Education and Counseling, 2022, 105, 695-706.	2.2	1
3	Direct comparison of high-sensitivity cardiac troponin T and I in the early differentiation of type 1 vs. type 2 myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 62-74.	1.0	11
4	Incidence, clinical presentation, management, and outcome of acute pericarditis and myopericarditis. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 137-147.	1.0	5
5	Adding stress biomarkers to high-sensitivity cardiac troponin for rapid non-ST-elevation myocardial infarction rule-out protocols. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 201-212.	1.0	9
6	A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 325-335.	1.0	4
7	Soluble urokinase plasminogen activator receptor and functionally relevant coronary artery disease: a prospective cohort study. Biomarkers, 2022, 27, 278-285.	1.9	2
8	Gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and cardiovascular risk in patients with suspected functionally relevant coronary artery disease (fCAD). Clinical Research in Cardiology, 2022, 111, 692-704.	3.3	10
9	Characteristics and Outcomes of Type 2 Myocardial Infarction. JAMA Cardiology, 2022, 7, 427.	6.1	12
10	Follow Up imaging After Left Atrial Appendage Occlusion–Something or Nothing and for How Long?. Interventional Cardiology Clinics, 2022, 11, 159-170.	0.4	0
11	Skeletal Muscle Disorders: A Noncardiac Source of Cardiac Troponin T. Circulation, 2022, 145, 1764-1779.	1.6	38
12	Lower diagnostic accuracy of hs-cTnl in patients with prior coronary artery bypass grafting. International Journal of Cardiology, 2022, 354, 1-6.	1.7	4
13	International Validation of the Canadian Syncope Risk Score. Annals of Internal Medicine, 2022, 175, 783-794.	3.9	8
14	Early kinetics of cardiac troponin in suspected acute myocardial infarction. Revista Espanola De Cardiologia (English Ed), 2021, 74, 502-509.	0.6	5
15	Early Rule-Out Strategies in the Emergency Department Utilizing High-Sensitivity Cardiac Troponin Assays. Clinical Chemistry, 2021, 67, 114-123.	3.2	12
16	Development and Validation of a Simplified Probability Assessment Score Integrated With Ageâ€Adjusted <scp>d</scp> â€Dimer for Diagnosis of Acute Aortic Syndromes. Journal of the American Heart Association, 2021, 10, e018425.	3.7	21
17	Cardiac myosinâ€binding protein <scp>C</scp> in the diagnosis and risk stratification of acute heart failure. European Journal of Heart Failure, 2021, 23, 716-725.	7.1	4
18	Effect of COVID-19 on acute treatment of ST-segment elevation and Non-ST-segment elevation acute coronary syndrome in northwestern Switzerland. IJC Heart and Vasculature, 2021, 32, 100686.	1.1	7

#	Article	IF	Citations
19	Diagnostic Performance of the European Society of Cardiology 0/1-h Algorithms in Late Presenters. Journal of the American College of Cardiology, 2021, 77, 1264-1267.	2.8	6
20	External Validation and Extension of a Clinical Score for the Discrimination of Type 2 Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 1264.	2.4	3
21	External validation of the clinical chemistry score. Clinical Biochemistry, 2021, 91, 16-25.	1.9	5
22	CARDIAC ARREST AND CLINICAL OUTCOMES IN COVID 19 PATIENTS : A SINGLE CENTER EXPERIENCE. Journal of the American College of Cardiology, 2021, 77, 3180.	2.8	0
23	External Validation of the No Objective Testing Rules in Acute Chest Pain. Journal of the American Heart Association, 2021, 10, e020031.	3.7	2
24	Strategies for Recovering an Embolized Percutaneous Device. Current Cardiology Reports, 2021, 23, 123.	2.9	0
25	Cardiovascular Biomarkers in the Early Discrimination of Type 2 Myocardial Infarction. JAMA Cardiology, 2021, 6, 771.	6.1	24
26	Prospective Validation of the ESC 0/1h-Algorithm Using High-Sensitivity Cardiac Troponin I. American Journal of Cardiology, 2021, 158, 152-153.	1.6	4
27	Novel Criteria for the Observe-Zone of the ESC 0/1h-hs-cTnT Algorithm. Circulation, 2021, 144, 773-787.	1.6	25
28	Coronary Events in the Pregnant Patient: Who is at Risk and How Best to Manage?. Canadian Journal of Cardiology, 2021, , .	1.7	2
29	Utility of Echocardiography in Patients With Suspected Acute Myocardial Infarction and Left Bundleâ€Branch Block. Journal of the American Heart Association, 2021, 10, e021262.	3.7	1
30	Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. American Heart Journal, 2021, 242, 132-137.	2.7	9
31	Validation of the Novel European Society of Cardiology 0/2-hour Algorithm Using Hs-cTnT in the Early Diagnosis of Myocardial Infarction. American Journal of Cardiology, 2021, 154, 128-130.	1.6	1
32	Development of an electrocardiogram-based risk calculator for a cardiac cause of syncope. Heart, 2021, 107, 1796-1804.	2.9	7
33	Association of Previous Myocardial Infarction and Time to Presentation With Suspected Acute Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e017829.	3.7	2
34	Influence of previous coronary artery bypass grafting in the difficulty of acute coronary syndrome diagnosis. European Journal of Emergency Medicine, 2021, 28, 125-135.	1.1	2
35	Biomarkers for Myocardial Infarction Type Discriminationâ€"The Key Might Be in the Time Course of the Diseaseâ€"Reply. JAMA Cardiology, 2021, , .	6.1	0
36	Clinical presentation of patients with prior coronary artery bypass grafting and suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 746-755.	1.0	2

3

#	Article	IF	CITATIONS
37	Left atrial appendage closure – Current status and future directions. Progress in Cardiovascular Diseases, 2021, 69, 101-109.	3.1	8
38	Cardiac rehabilitation following coronary artery dissection: recommendations and patient considerations. Expert Review of Cardiovascular Therapy, 2021, 19, 1005-1012.	1.5	2
39	Incremental value of high-frequency QRS analysis for diagnosis and prognosis in suspected exercise-induced myocardial ischaemia. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 836-847.	1.0	3
40	Drug-coated balloons in cardiovascular disease: benefits, challenges, and clinical applications. Expert Opinion on Drug Delivery, 2020, 17, 201-211.	5.0	20
41	Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes. Diabetes Care, 2020, 43, 460-467.	8.6	18
42	Incidence, characteristics, determinants, and prognostic impact of recurrent syncope. Europace, 2020, 22, 1885-1895.	1.7	8
43	Letter by Schoepfer et al Regarding Article, "Incidence, Trends, and Outcomes of Type 2 Myocardial Infarction in a Community Cohort― Circulation, 2020, 142, e25-e26.	1.6	0
44	Rhabdomyolysis. Journal of the American College of Cardiology, 2020, 76, 2685-2687.	2.8	8
45	Effect of a Proposed Modification of the Type 1 and Type 2 Myocardial Infarction Definition on Incidence and Prognosis. Circulation, 2020, 142, 2083-2085.	1.6	14
46	Using High-Sensitivity Cardiac Troponin for the Exclusion of Inducible Myocardial Ischemia in Symptomatic Patients. Annals of Internal Medicine, 2020, 172, 175.	3.9	14
47	Reply to Shang & amp; Feng et al International Journal of Cardiology, 2020, 307, 152.	1.7	0
48	Letter by Coscia et al Regarding Article, "High-Sensitivity Cardiac Troponin and the Universal Definition of Myocardial Infarctionâ€. Circulation, 2020, 141, e880-e881.	1.6	2
49	Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020, 75, 1111-1124.	2.8	94
50	Obesity paradox and perioperative myocardial infarction/injury in non-cardiac surgery. Clinical Research in Cardiology, 2020, 109, 1140-1147.	3.3	15
51	Diagnostic and prognostic value of ST-segment deviation scores in suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 857-868.	1.0	3
52	Coronary and structural heart interventions in Switzerland 2018. Swiss Medical Weekly, 2020, 150, w20200.	1.6	1
53	Circadian, weekly, seasonal, and temperature-dependent patterns of syncope aetiology in patients at increased risk of cardiac syncope. Europace, 2019, 21, 511-521.	1.7	7
54	Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation, 2019, 140, 899-909.	1.6	128

#	Article	IF	Citations
55	Predicting Major Adverse Events in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 842-854.	2.8	28
56	Prevalence of Pulmonary Embolism in Patients With Syncope. Journal of the American College of Cardiology, 2019, 74, 744-754.	2.8	26
57	Early Diagnosis of Myocardial Infarction in Patients With a History of Coronary Artery Bypass Grafting. Journal of the American College of Cardiology, 2019, 74, 587-589.	2.8	7
58	Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 483-494.	2.8	126
59	Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. New England Journal of Medicine, 2019, 380, 2529-2540.	27.0	230
60	Clinical Utility of Procalcitonin in the Diagnosis of Pneumonia. Clinical Chemistry, 2019, 65, 1532-1542.	3.2	37
61	Predicting Acute Myocardial Infarction with a Single Blood Draw. Clinical Chemistry, 2019, 65, 437-450.	3.2	7
62	Calcified epicardial fat necrosis causing epicardial constriction. European Heart Journal, 2019, 40, 3698-3698.	2.2	2
63	Clinical Use of a New High-Sensitivity Cardiac Troponin I Assay in Patients with Suspected Myocardial Infarction. Clinical Chemistry, 2019, 65, 1426-1436.	3.2	41
64	Two-Hour Algorithm for Rapid Triage of Suspected Acute Myocardial Infarction Using a High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2019, 65, 1437-1447.	3.2	36
65	Growth differentiation factor-15 and all-cause mortality in patients with suspected myocardial infarction. International Journal of Cardiology, 2019, 292, 241-245.	1.7	7
66	Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart, 2019, 105, 1559-1567.	2.9	24
67	Diagnostic Accuracy of a High-Sensitivity Cardiac Troponin Assay with a Single Serum Test in the Emergency Department. Clinical Chemistry, 2019, 65, 1006-1014.	3.2	13
68	Prospective validation of current quantitative electrocardiographic criteria for ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 292, 1-12.	1.7	27
69	High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2019, 65, 893-904.	3.2	59
70	Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart, 2019, 105, 1423-1431.	2.9	42
71	Prospective validation of Nâ€ŧerminal pro Bâ€ŧype natriuretic peptide cutâ€off concentrations for the diagnosis of acute heart failure. European Journal of Heart Failure, 2019, 21, 813-815.	7.1	10
72	Relative hypochromia and mortality in acute heart failure. International Journal of Cardiology, 2019, 286, 104-110.	1.7	11

#	Article	IF	CITATIONS
73	Prevalence and determinants of exerciseâ€induced left ventricular dysfunction in patients with coronary artery disease. European Journal of Clinical Investigation, 2019, 49, e13112.	3.4	O
74	B-Type Natriuretic Peptides and Cardiac Troponins for Diagnosis and Risk-Stratification of Syncope. Circulation, 2019, 139, 2403-2418.	1.6	40
75	External Validation of the MEESSI Acute Heart Failure Risk Score. Annals of Internal Medicine, 2019, 170, 248.	3.9	40
76	Impact of Food and Drug Administration Regulatory Approach on the 0/2-Hour Algorithm for Rapid Triage of Suspected Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005188.	2.2	3
77	Clinical utility of circulating interleukin-6 concentrations in the detection of functionally relevant coronary artery disease. International Journal of Cardiology, 2019, 275, 20-25.	1.7	10
78	Comparison of fourteen rule-out strategies for acute myocardial infarction. International Journal of Cardiology, 2019, 283, 41-47.	1.7	45
79	Incremental diagnostic and prognostic value of the QRS-T angle, a 12-lead ECG marker quantifying heterogeneity of depolarization and repolarization, in patients with suspected non-ST-elevation myocardial infarction. International Journal of Cardiology, 2019, 277, 8-15.	1.7	18
80	Drug-coated Balloons for Small Coronary Vessel Interventions: A Literature Review. Interventional Cardiology Review, 2019, 14, 131-136.	1.6	14
81	Biomarkers in cardiovascular medicine: towards precision medicine. Swiss Medical Weekly, 2019, 149, w20125.	1.6	11
82	Diagnostic value of the cardiac electrical biomarker, a novel ⟨scp⟩ECG⟨/scp⟩ marker indicating myocardial injury, in patients with symptoms suggestive of nonâ€∢scp⟩ST⟨/scp⟩â€elevation myocardial infarction. Annals of Noninvasive Electrocardiology, 2018, 23, e12538.	1.1	9
83	Impact of the US Food and Drug Administration–Approved Sex-Specific Cutoff Values for High-Sensitivity Cardiac Troponin T to Diagnose Myocardial Infarction. Circulation, 2018, 137, 1867-1869.	1.6	18
84	Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2018, 138, 989-999.	1.6	56
85	Automatically computed ECG algorithm for the quantification of myocardial scar and the prediction of mortality. Clinical Research in Cardiology, 2018, 107, 824-835.	3.3	4
86	Effect of Acute Coronary Syndrome Probability on Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin. Clinical Chemistry, 2018, 64, 515-525.	3.2	5
87	How to best use high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Clinical Biochemistry, 2018, 53, 143-155.	1.9	17
88	Prospective Validation of a Biomarker-Based Rule Out Strategy for Functionally Relevant Coronary Artery Disease. Clinical Chemistry, 2018, 64, 386-395.	3.2	30
89	Diagnostic Accuracy of the Aortic Dissection Detection Risk Score Plus D-Dimer for Acute Aortic Syndromes. Circulation, 2018, 137, 250-258.	1.6	190
90	0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation, 2018, 137, 436-451.	1.6	110

#	Article	IF	Citations
91	Combining high-sensitivity cardiac troponin and B-type natriuretic peptide in the detection of inducible myocardial ischemia. Clinical Biochemistry, 2018, 52, 33-40.	1.9	13
92	Characteristics and occurrence of type 2 myocardial infarction in emergency department patients: a prospective study. Emergency Medicine Journal, 2018, 35, 169-175.	1.0	23
93	Letter by Nestelberger et al Regarding Article, "Association Between Early Hyperoxia Exposure After Resuscitation from Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study― Circulation, 2018, 138, 2862-2863.	1.6	0
94	Response by Kaier et al to Letter Regarding Article, "Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction― Circulation, 2018, 138, 544-545.	1.6	2
95	Rhabdomyolysis. Journal of the American College of Cardiology, 2018, 72, 2936-2937.	2.8	16
96	Type 2 myocardial infarction. European Heart Journal, 2018, 39, 3825-3825.	2.2	2
97	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	2.2	78
98	Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2018, 64, 1347-1360.	3. 2	110
99	Amyloid- \hat{l}^2 (1-40) and Mortality in Patients With Nonâ \in "ST-Segment Elevation Acute Coronary Syndrome. Annals of Internal Medicine, 2018, 168, 855.	3.9	29
100	Prospective Validation of the $0/1$ -h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	2.8	147
101	Prospective validation of prognostic and diagnostic syncope scores in the emergency department. International Journal of Cardiology, 2018, 269, 114-121.	1.7	18
102	Proenkephalin for the early detection of acute kidney injury in hospitalized patients with chronic kidney disease. European Journal of Clinical Investigation, 2018, 48, e12999.	3.4	8
103	Direct Comparison of Cardiac Troponin T and I Using a Uniform and a Sex-Specific Approach in the Detection of Functionally Relevant Coronary Artery Disease. Clinical Chemistry, 2018, 64, 1596-1606.	3.2	19
104	Direct Comparison of the 0/1h and 0/3h Algorithms for Early Rule-Out of Acute Myocardial Infarction. Circulation, 2018, 137, 2536-2538.	1.6	48
105	Diagnostic and prognostic value of QRS duration and QTc interval in patients with suspected myocardial infarction. Cardiology Journal, 2018, 25, 601-610.	1.2	13
106	Diagnostic and Prognostic Value of Lead aVR During Exercise Testing in Patients Suspected of Having Myocardial Ischemia. American Journal of Cardiology, 2017, 119, 959-966.	1.6	8
107	Direct Comparison of 4 Very Early Rule-Out Strategies for Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin I. Circulation, 2017, 135, 1597-1611.	1.6	138
108	Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clinical Research in Cardiology, 2017, 106, 457-467.	3.3	35

#	Article	IF	CITATIONS
109	Diagnostic and prognostic values of the V-index, a novel ECG marker quantifying spatial heterogeneity of ventricular repolarization, in patients with symptoms suggestive of non-ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 236, 23-29.	1.7	16
110	Direct Comparison of 2 Rule-Out Strategies for Acute Myocardial Infarction: 2-h Accelerated Diagnostic Protocol vs 2-h Algorithm. Clinical Chemistry, 2017, 63, 1227-1236.	3.2	35
111	Diagnostic value of ST-segment deviations during cardiac exercise stress testing: Systematic comparison of different ECG leads and time-points. International Journal of Cardiology, 2017, 238, 166-172.	1.7	7
112	Letter to the Editor: "High sensitive cardiac troponin T: Testing the test― International Journal of Cardiology, 2017, 234, 126.	1.7	0
113	Comparison of the Efficacy and Safety of Early Rule-Out Pathways for Acute Myocardial Infarction. Circulation, 2017, 135, 1586-1596.	1.6	153
114	An algorithm for rule-in and rule-out of acute myocardial infarction using a novel troponin I assay. Heart, 2017, 103, 125-131.	2.9	18
115	Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2017, 136, 1495-1508.	1.6	63
116	Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1558-1568.	2.8	94
117	Effect of the FDA Regulatory Approach on the 0/1-h Algorithm for Rapid Diagnosis of MI. Journal of the American College of Cardiology, 2017, 70, 1532-1534.	2.8	15
118	Diagnostic and prognostic value of cystatin C in acute heart failure. Clinical Biochemistry, 2017, 50, 1007-1013.	1.9	28
119	Clinical Use of High-Sensitivity Cardiac Troponin in Patients With Suspected Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 996-1012.	2.8	183
120	Gender-specific uncertainties in the diagnosis of acute coronary syndrome. Clinical Research in Cardiology, 2017, 106, 28-37.	3.3	16
121	Prohormones in the Early Diagnosis of Cardiac Syncope. Journal of the American Heart Association, 2017, 6, .	3.7	16
122	Diurnal Rhythm of Cardiac Troponin: Consequences for the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2016, 62, 1602-1611.	3.2	71
123	Multimarker assessment for the prediction of renal function improvement after percutaneous revascularization for renal artery stenosis. Cardiovascular Diagnosis and Therapy, 2016, 6, 221-233.	1.7	2
124	Clinical impact of the 2010–2012 low-end shift of high-sensitivity cardiac troponin T. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 399-408.	1.0	20
125	Clinical Effect of Sex-Specific Cutoff Values of High-Sensitivity Cardiac Troponin T in Suspected Myocardial Infarction. JAMA Cardiology, 2016, 1, 912.	6.1	75
126	Diagnostic and Prognostic Utility of Circulating Cytochrome <i>c</i> in Acute Myocardial Infarction. Circulation Research, 2016, 119, 1339-1346.	4.5	15

#	Article	IF	Citations
127	Measurement of cardiac troponin for exclusion of myocardial infarction. Lancet, The, 2016, 387, 2288.	13.7	5
128	Two-Hour Algorithm for Triage toward Rule-Out and Rule-In of Acute Myocardial Infarction by Use of High-Sensitivity Cardiac Troponin I. Clinical Chemistry, 2016, 62, 494-504.	3.2	95
129	Incidence and Predictors of Cardiomyocyte Injury in Elective Coronary Angiography. American Journal of Medicine, 2016, 129, 537.e1-537.e8.	1.5	4
130	Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1 h-algorithm for the early diagnosis of acute myocardial infarction. International Journal of Cardiology, 2016, 207, 238-245.	1.7	85
131	One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. American Heart Journal, 2016, 171, 92-102.e5.	2.7	102
132	Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. European Heart Journal, 2016, 37, 3324-3332.	2.2	132
133	Effects of hemolysis on the diagnostic accuracy of cardiac troponin I for the diagnosis of myocardial infarction. International Journal of Cardiology, 2015, 187, 313-315.	1.7	8
134	Integration of Virtual Technologies in a Minimalist Transcatheter Aortic Valve Replacement Clinical Care Pathway. Structural Heart, 0, , 1-4.	0.6	0
135	Optimising the early rule-out and rule-in of myocardial infarction using biomarkers. Cardiovascular Medicine(Switzerland), 0, , .	0.0	3