Alex C Kwan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219458/publications.pdf

Version: 2024-02-01

394421 434195 2,349 32 19 31 citations h-index g-index papers 43 43 43 2797 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature Neuroscience, 2013, 16, 1857-1863.	14.8	489
2	Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex inÂvivo. Neuron, 2021, 109, 2535-2544.e4.	8.1	214
3	Secondary Motor Cortex: Where â€~Sensory' Meets â€~Motor' in the Rodent Frontal Cortex. Trends in Neurosciences, 2017, 40, 181-193.	8.6	199
4	Electrophysiological Characterization of V2a Interneurons and Their Locomotor-Related Activity in the Neonatal Mouse Spinal Cord. Journal of Neuroscience, 2010, 30, 170-182.	3 . 6	139
5	Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nature Communications, 2020, $11,72$.	12.8	128
6	Dissection of Cortical Microcircuits by Single-Neuron Stimulation InÂVivo. Current Biology, 2012, 22, 1459-1467.	3.9	113
7	Longitudinal Effects of Ketamine on Dendritic Architecture <i>In Vivo </i> ii the Mouse Medial Frontal Cortex. ENeuro, 2016, 3, ENEURO.0133-15.2016.	1.9	107
8	Interneuron subtypes and orientation tuning. Nature, 2014, 508, E1-E2.	27.8	96
9	Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior. Nature Neuroscience, 2016, 19, 1234-1242.	14.8	96
10	Optical visualization of Alzheimer's pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Optics Express, 2009, 17, 3679.	3.4	94
11	Polarized microtubule arrays in apical dendrites and axons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11370-11375.	7.1	89
12	Activity of Hb9 Interneurons during Fictive Locomotion in Mouse Spinal Cord. Journal of Neuroscience, 2009, 29, 11601-11613.	3 . 6	69
13	Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. Neurophotonics, 2019, 7, 1.	3.3	65
14	A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends in Neurosciences, 2021, 44, 260-275.	8.6	58
15	A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging. Nature Neuroscience, 2021, 24, 1324-1337.	14.8	57
16	Targeted two-photon chemical apoptotic ablation of defined cell types in vivo. Nature Communications, 2017, 8, 15837.	12.8	41
17	Enhanced Population Coding for Rewarded Choices in the Medial Frontal Cortex of the Mouse. Cerebral Cortex, 2019, 29, 4090-4106.	2.9	37
18	Parvalbumin-Positive Neuron Loss and Amyloid-β Deposits in the Frontal Cortex of Alzheimer's Disease-Related Mice. Journal of Alzheimer's Disease, 2019, 72, 1323-1339.	2.6	30

#	Article	IF	CITATIONS
19	Spatiotemporal Dynamics of Rhythmic Spinal Interneurons Measured With Two-Photon Calcium Imaging and Coherence Analysis. Journal of Neurophysiology, 2010, 104, 3323-3333.	1.8	28
20	Psychedelics. Current Biology, 2022, 32, R63-R67.	3.9	26
21	Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. Nano Letters, 2020, 20, 4073-4083.	9.1	18
22	Dopamine-induced oscillations of the pyloric pacemaker neuron rely on release of calcium from intracellular stores. Journal of Neurophysiology, 2011, 106, 1288-1298.	1.8	15
23	Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Molecular Psychiatry, 2021, 26, 1945-1966.	7.9	15
24	Cumulative Effects of Social Stress on Reward-Guided Actions and Prefrontal Cortical Activity. Biological Psychiatry, 2020, 88, 541-553.	1.3	15
25	Secondary motor cortex: Broadcasting and biasing animal's decisions through long-range circuits. International Review of Neurobiology, 2021, 158, 443-470.	2.0	15
26	Ketamine for a Boost of Neural Plasticity: How, but Also When?. Biological Psychiatry, 2021, 89, 1030-1032.	1.3	13
27	What Can Population Calcium Imaging Tell Us About Neural Circuits?. Journal of Neurophysiology, 2008, 100, 2977-2980.	1.8	8
28	Applying Reinforcement Learning to Rodent Stress Research. Chronic Stress, 2021, 5, 247054702098473.	3.4	6
29	Pupil Correlates of Decision Variables in Mice Playing a Competitive Mixed-Strategy Game. ENeuro, 2022, 9, ENEURO.0457-21.2022.	1.9	6
30	Toward reconstructing spike trains from largeâ€scale calcium imaging data. HFSP Journal, 2010, 4, 1-5.	2.5	2
31	Same lesson, varied choices by frontal cortex. Nature Neuroscience, 2018, 21, 1648-1650.	14.8	2
32	A visuomotor microcircuit in frontal cortex. Nature Neuroscience, 2021, 24, 1345-1347.	14.8	0