Hirofumi Akari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human Immunodeficiency Virus Type 1 Vpu Protein Inhibits NF-κB Activation by Interfering with βTrCP-mediated Degradation of IκB. Journal of Biological Chemistry, 2001, 276, 15920-15928.	3.4	164
2	Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology, 2004, 319, 163-175.	2.4	149
3	The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor κB–dependent Expression of Antiapoptotic Factors. Journal of Experimental Medicine, 2001, 194, 1299-1312.	8.5	139
4	Human Immunodeficiency Virus Type 1 Vif Protein Is Packaged into the Nucleoprotein Complex through an Interaction with Viral Genomic RNA. Journal of Virology, 2001, 75, 7252-7265.	3.4	132
5	Nef-Induced Major Histocompatibility Complex Class I Down-Regulation Is Functionally Dissociated from Its Virion Incorporation, Enhancement of Viral Infectivity, and CD4 Down-Regulation. Journal of Virology, 2000, 74, 2907-2912.	3.4	106
6	Cell-Dependent Requirement of Human Immunodeficiency Virus Type 1 gp41 Cytoplasmic Tail for Env Incorporation into Virions. Journal of Virology, 2000, 74, 4891-4893.	3.4	90
7	MDM2 is a novel E3 ligase for HIV-1 Vif. Retrovirology, 2009, 6, 1.	2.0	84
8	In VitroImmortalization of Old World Monkey T Lymphocytes withHerpesvirus Saimiri:Its Susceptibility to Infection with Simian Immunodeficiency Viruses. Virology, 1996, 218, 382-388.	2.4	80
9	Different Effects of Nef-Mediated HLA Class I Down-Regulation on Human Immunodeficiency Virus Type 1-Specific CD8 + T-Cell Cytolytic Activity and Cytokine Production. Journal of Virology, 2002, 76, 7535-7543.	3.4	77
10	Peripheral blood CD4+CD8+ lymphocytes in cynomolgus monkeys are of resting memory T lineage. International Immunology, 1997, 9, 591-597.	4.0	70
11	Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes and Infection, 2004, 6, 791-798.	1.9	69
12	Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: development of high levels of viraemia and demonstration of protective immunity. Journal of General Virology, 2011, 92, 2272-2280.	2.9	67
13	Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells. Archives of Virology, 1992, 123, 157-167.	2.1	64
14	Human Immunodeficiency Virus Type 1 Vif Is Efficiently Packaged into Virions during Productive but Not Chronic Infection. Journal of Virology, 2003, 77, 1131-1140.	3.4	61
15	The HIV-1 Vpr displays strong anti-apoptotic activity. FEBS Letters, 1998, 432, 17-20.	2.8	59
16	Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics, 2008, 60, 727-735.	2.4	57
17	Gag-Specific Cytotoxic T-Lymphocyte-Based Control of Primary Simian Immunodeficiency Virus Replication in a Vaccine Trial. Journal of Virology, 2008, 82, 10199-10206.	3.4	57
18	Establishment of a phylogenetic survey system for AIDS-related lentiviruses and demonstration of a new HIV-2 subgroup. Aids, 1990, 4, 1257-1262.	2.2	56

Hirofumi Akarı

#	Article	IF	CITATIONS
19	High Level Expression of Human Immunodeficiency Virus Type-1 Vif Inhibits Viral Infectivity by Modulating Proteolytic Processing of the Gag Precursor at the p2/Nucleocapsid Processing Site. Journal of Biological Chemistry, 2004, 279, 12355-12362.	3.4	56
20	Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo. PLoS Pathogens, 2017, 13, e1006722.	4.7	56
21	Ubiquitination of APOBEC3 proteins by the Vif–Cullin5–ElonginB–ElonginC complex. Virology, 2006, 344, 263-266.	2.4	52
22	New Type of Sendai Virus Vector Provides Transgene-Free iPS Cells Derived from Chimpanzee Blood. PLoS ONE, 2014, 9, e113052.	2.5	50
23	Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics, 2010, 62, 601-611.	2.4	46
24	Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes and Infection, 2003, 5, 387-395.	1.9	43
25	Improved capacity of a monkey-tropic HIV-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes and Infection, 2011, 13, 58-64.	1.9	40
26	Generation of Rhesus Macaque-Tropic HIV-1 Clones That Are Resistant to Major Anti-HIV-1 Restriction Factors. Journal of Virology, 2013, 87, 11447-11461.	3.4	40
27	Naturally occurring amino acid substitutions in the HIV-2 ROD envelope glycoprotein regulate its ability to augment viral particle release. Virology, 2003, 309, 85-98.	2.4	39
28	Functional analysis of long terminal repeats derived from four strains of simian immunodeficiency virus SIVAGM in Relation to Other Primate Lentiviruses. Virology, 1991, 185, 455-459.	2.4	37
29	Peripheral blood extrathymic CD4+CD8+ T cells with high cytotoxic activity are from the same lineage as CD4+CD8– T cells in cynomolgus monkeys. International Immunology, 2000, 12, 1095-1103.	4.0	36
30	Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA) protein in a human immunodeficiency virus type 1 (HIV-1) derivative that has simian immunodeficiency virus (SIVmac239) vifand CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology, 2009, 6, 70.	2.0	36
31	Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection. Retrovirology, 2013, 10, 118.	2.0	36
32	Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood, 2008, 111, 243-250.	1.4	35
33	Pseudotyping human immunodeficiency virus type 1 by vesicular stomatitis virus G protein does not reduce the cell-dependent requirement of Vif for optimal infectivity: functional difference between Vif and Nef. Journal of General Virology, 1999, 80, 2945-2949.	2.9	35
34	Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model. Gut, 2018, 67, 372-379.	12.1	34
35	Short Communication : Phenotypic Changes in Peripheral Blood Monocytes of Cynomolgus Monkeys Acutely Infected with Simian Immunodeficiency Virus. AIDS Research and Human Retroviruses, 1998, 14, 1181-1186.	1.1	33
36	Age-Related Changes in Major Lymphocyte Subsets in Cynomolgus Monkeys Experimental Animals, 1998, 47, 159-166.	1.1	33

#	Article	IF	CITATIONS
37	Efficient regulation of viral replication by siRNA in a non-human primate surrogate model for hepatitis C. Biochemical and Biophysical Research Communications, 2007, 361, 294-300.	2.1	31
38	Effects of SIVmac Infection on Peripheral Blood CD4+CD8+T Lymphocytes in Cynomolgus Macaques. Clinical Immunology, 1999, 91, 321-329.	3.2	30
39	Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics, 2012, 64, 131-141.	2.4	30
40	nef Gene Is Required for Robust Productive Infection by Simian Immunodeficiency Virus of T-Cell-Rich Paracortex in Lymph Nodes. Journal of Virology, 2003, 77, 4169-4180.	3.4	28
41	Detection of 14 alleles derived from the MHC classïį¼2I A locus in cynomolgus monkeys. Immunogenetics, 2004, 56, 155-63.	2.4	28
42	Regulation of cell cycle and apoptosis by human immunodeficiency virus type 1 Vpr. Microbes and Infection, 2000, 2, 1011-1017.	1.9	27
43	Intravirion Processing of the Human Immunodeficiency Virus Type 1 Vif Protein by the Viral Protease May Be Correlated with Vif Function. Journal of Virology, 2002, 76, 9112-9123.	3.4	27
44	Gag-CA Q110D mutation elicits TRIM5-independent enhancement ofÂHIV-1mt replication in macaque cells. Microbes and Infection, 2013, 15, 56-65.	1.9	27
45	Induction of Apoptosis in Herpesvirus saimiri-Immortalized T Lymphocytes by Blocking Interaction of CD28 with CD80/CD86. Biochemical and Biophysical Research Communications, 1999, 263, 352-356.	2.1	26
46	Age-related increase of peripheral CD4+ CD8+ double-positive T lymphocytes in cynomolgus monkeys: longitudinal study in relation to thymic involution. Immunology, 2003, 109, 217-225.	4.4	26
47	Prevalence and Molecular Phylogenetic Characterization of Trypanosoma (Megatrypanum) Minasense in the Peripheral Blood of Small Neotropical Primates After a Quarantine Period. Journal of Parasitology, 2008, 94, 1128-1138.	0.7	26
48	Demonstration of marmosets (Callithrix jacchus) as a non-human primate model for secondary dengue virus infection: high levels of viraemia and serotype cross-reactive antibody responses consistent with secondary infection of humans. Journal of General Virology, 2014, 95, 591-600.	2.9	26
49	HIV-1 capsid mutants inhibit the replication of wild-type virus at both early and late infection phases. FEBS Letters, 1997, 415, 231-234.	2.8	25
50	TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2216-2221.	7.1	25
51	Enhancement of human immunodeficiency virus type 1 infectivity by Nef is producer cell-dependent Journal of General Virology, 1998, 79, 2447-2453.	2.9	25
52	Systemic biological analysis of the mutations in two distinct HIV-1mt genomes occurred during replication in macaque cells. Microbes and Infection, 2013, 15, 319-328.	1.9	24
53	Age-dependent remodeling of peripheral blood CD4+ CD8+ T lymphocytes in cynomolgus monkeys. Developmental and Comparative Immunology, 1998, 22, 239-248.	2.3	23
54	Epidemiological study of zoonoses derived from humans in captive chimpanzees. Primates, 2013, 54, 89-98.	1.1	23

#	Article	IF	CITATIONS
55	PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nature Communications, 2019, 10, 1844.	12.8	22
56	Geographical, genetic and functional diversity of antiretroviral host factor TRIMCyp in cynomolgus macaque (Macaca fascicularis). Journal of General Virology, 2012, 93, 594-602.	2.9	21
57	Accumulation of MAC387+ macrophages in paracortical areas of lymph nodes in rhesus monkeys acutely infected with simian immunodeficiency virus. Microbes and Infection, 1999, 1, 977-985.	1.9	20
58	Long-Term Persistent GBV-B Infection and Development of a Chronic and Progressive Hepatitis C-Like Disease in Marmosets. Frontiers in Microbiology, 2011, 2, 240.	3.5	20
59	Dysâ€regulated activation of a Src tyroine kinase Hck at the Golgi disturbs <i>N</i> â€glycosylation of a cytokine receptor Fms. Journal of Cellular Physiology, 2009, 221, 458-468.	4.1	19
60	Efficient inhibition of SDFâ€1αâ€mediated chemotaxis and HIVâ€1 infection by novel CXCR4 antagonists. Cancer Science, 2009, 100, 778-781.	3.9	19
61	Changes in hematological and serum biochemical parameters in common marmosets (<i>Callithrix) Tj ETQq1 1 0.7</i>	784314 rg 0.6	BT /Overloc
62	Mapping Region of Human Restriction Factor APOBEC3H Critical for Interaction with HIV-1 Vif. Journal of Molecular Biology, 2017, 429, 1262-1276.	4.2	18
63	Enhancement of anti-STLV-1/HTLV-1 immune responses through multimodal effects of anti-CCR4 antibody. Scientific Reports, 2016, 6, 27150.	3.3	17
64	Dynamics of cellular immune responses in the acute phase of dengue virus infection. Archives of Virology, 2013, 158, 1209-1220.	2.1	16
65	Short Communication: Simian T Cell Leukemia Virus Type I-Induced Malignant Adult T Cell Leukemia-Like Disease in a Naturally Infected African Green Monkey: Implication of CD8+T Cell Leukemia. AIDS Research and Human Retroviruses, 1998, 14, 367-371.	1.1	15
66	Nonâ€human primate surrogate model of hepatitis C virus infection. Microbiology and Immunology, 2009, 53, 53-57.	1.4	15
67	TRIM5 genotypes in cynomolgus monkeys primarily influence inter-individual diversity in susceptibility to monkey-tropic human immunodeficiency virus type 1. Journal of General Virology, 2013, 94, 1318-1324.	2.9	15
68	Functional Domain Mapping of HIV-1 Gag Proteins. Biochemical and Biophysical Research Communications, 1997, 241, 317-320.	2.1	14
69	Cyclophilin A-Independent Replication of a Human Immunodeficiency Virus Type 1 Isolate Carrying a Small Portion of the Simian Immunodeficiency Virus SIV MAC gag Capsid Region. Journal of Virology, 2001, 75, 10527-10531.	3.4	14
70	GBV-B as a pleiotropic virus: distribution of GBV-B in extrahepatic tissues in vivo. Microbes and Infection, 2007, 9, 515-521.	1.9	14
71	Emergence of infectious malignant thrombocytopenia in Japanese macaques (Macaca fuscata) by SRV-4 after transmission to a novel host. Scientific Reports, 2015, 5, 8850.	3.3	14
72	Isolation and characterization of a highly divergent HIV-2[GH-2]: Generation of an infectious molecular clone and functional analysis of its rev-responsive element in response to primate retrovirus transactivators (rev and rex). Virology, 1992, 188, 850-853.	2.4	13

#	Article	IF	CITATIONS
73	Broadening of Virus-Specific CD8+ T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers. PLoS Pathogens, 2015, 11, e1005247.	4.7	13
74	Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Frontiers in Microbiology, 2013, 4, 187.	3.5	12
75	Early Function of HIV-1 Gag Proteins Is Cell-Dependent. Biochemical and Biophysical Research Communications, 1998, 248, 899-903.	2.1	10
76	Producer Cell-Dependent Requirement of the Nef Protein for Efficient Entry of HIV-1 into Cells. Biochemical and Biophysical Research Communications, 1998, 250, 565-568.	2.1	10
77	Compatibility of Vpu-like activity in the four groups of primate immunodeficiency viruses. Virus Genes, 1999, 18, 183-187.	1.6	10
78	Mutational analysis of human immunodeficiency virus type 1 vif gene. Virus Genes, 1999, 18, 179-181.	1.6	10
79	Susceptibility of HVS-immortalized lymphocytic HSC-F cells to various strains and mutants of HIV/SIV. International Journal of Molecular Medicine, 2003, 11, 641.	4.0	10
80	Detection of SRV/D shedding in body fluids of cynomolgus macaques and comparison of partial gp70 sequences in SRV/D-T isolates. Virus Genes, 2007, 35, 281-288.	1.6	10
81	Molecular evolution of immunoglobulin superfamily genes in primates. Immunogenetics, 2011, 63, 417-428.	2.4	10
82	Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication. Retrovirology, 2012, 9, 3.	2.0	10
83	Cleavage of Gag precursor is required for early replication phase of HIV-1. FEBS Letters, 1997, 415, 227-230.	2.8	9
84	Characterization of Natural Killer Cells in Tamarins: A Technical Basis for Studies of Innate Immunity. Frontiers in Microbiology, 2010, 1, 128.	3.5	9
85	CD16+ natural killer cells play a limited role against primary dengue virus infection in tamarins. Archives of Virology, 2012, 157, 363-368.	2.1	9
86	In vivo dynamics and adaptation of HTLV-1-infected clones under different clinical conditions. PLoS Pathogens, 2021, 17, e1009271.	4.7	9
87	Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. Journal of General Virology, 2016, 97, 963-976.	2.9	9
88	Prophylaxis of experimental HTLV-I infection in cynomolgus monkeys by passive immunization. Vaccine, 1997, 15, 1391-1395.	3.8	8
89	Molecular cloning and characterization of the common marmoset huntingtin gene. Gene, 2009, 432, 60-66.	2.2	8

Allele frequency of antiretroviral host factor TRIMCyp in wild-caught cynomolgus macaques (Macaca) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

#	Article	IF	CITATIONS
91	Serotype-specific and cross-reactive neutralizing antibody responses in cynomolgus monkeys after infection with multiple dengue virus serotypes. Archives of Virology, 2011, 156, 1073-1077.	2.1	7
92	ULBP4/RAET1E is highly polymorphic in the Old World monkey. Immunogenetics, 2011, 63, 501-509.	2.4	7
93	A Noncanonical mu-1A-Binding Motif in the N Terminus of HIV-1 Nef Determines Its Ability To Downregulate Major Histocompatibility Complex Class I in T Lymphocytes. Journal of Virology, 2012, 86, 3944-3951.	3.4	7
94	Presence of Viral Genome in Urine and Development of Hematuria and Pathological Changes in Kidneys in Common Marmoset (Callithrix jacchus) after Inoculation with Dengue Virus. Pathogens, 2013, 2, 357-363.	2.8	7
95	Seroprevalence of Japanese encephalitis virus infection in captive Japanese macaques (Macaca fuscata). Primates, 2014, 55, 441-445.	1.1	7
96	Efficacy of 6-Chloro-2',3'-Dideoxyguanosine (6-Cl-ddG) on Rhesus Macaque Monkeys Chronically Infected With Simian Immunodeficiency Virus (SIVmac239). Journal of Acquired Immune Deficiency Syndromes, 1997, 16, 313-317.	0.3	7
97	Efficacy of 6-chloro-2',3'-dideoxyguanosine(6-Cl-ddG) on an ARC/AIDS Rhesus macaque (Macaca) Tj ETQq1 1 0.7	84314 rg 1.1	BT /Overlock 6
98	Selective Expression of β7 Integrin on Lymphocytes Undergoing Apoptosis in Lymphoid Tissues. Biochemical and Biophysical Research Communications, 1998, 244, 578-582.	2.1	6
99	Short Communication : Induction of MHC-IIDR Expression on Circulating CD8 ⁺ Lymphocytes in Macaques Infected with SIVmac239 <i>nef</i> -Open but Not with Its nef-Deletion Mutant. AIDS Research and Human Retroviruses, 1998, 14, 619-625.	1.1	6
100	Lineage-specific evolution of T-cell immunoglobulin and mucin domain 1 gene in the primates. Immunogenetics, 2012, 64, 669-678.	2.4	6
101	Hematological and blood chemistry values in captive Japanese macaques (<i>Macaca fuscata) Tj ETQq1 1 0.784</i>	314 rgBT , 0.9	Overlock 10
102	The Novel PKC Activator 10-Methyl-Aplog-1 Combined with JQ1 Induced Strong and Synergistic HIV Reactivation with Tolerable Global T Cell Activation. Viruses, 2021, 13, 2037.	3.3	6
103	Frequent horizontal and mother-to-child transmission may contribute to high prevalence of STLV-1 infection in Japanese macaques. Retrovirology, 2020, 17, 15.	2.0	5
104	Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease. Molecular Therapy - Methods and Clinical Development, 2021, 21, 262-273.	4.1	5
105	Host cell-dependent replication of HIV-1 mutants with deletions in gp41 cytoplasmic tail region is independent of the function of Vif. Microbes and Infection, 2000, 2, 1019-1023.	1.9	4
106	Epidemiological Surveillance of Lymphocryptovirus Infection in Wild Bonobos. Frontiers in Microbiology, 2016, 7, 1262.	3.5	4
107	Prevalence of antibodies against human respiratory viruses potentially involving anthropozoonoses in wild bonobos. Primates, 2021, 62, 897-903.	1.1	4
108	Effects of 6-Chloro-2',3'-Dideoxyguanosine (6-Cl-ddG) in Surface Lymph Nodes of Rhesus Monkeys (Macaca mulatta) Chronically Infected with Simian Immunodeficiency Virus (SIVmac239) Journal of Veterinary Medical Science, 1997, 59, 891-896.	0.9	3

#	Article	IF	CITATIONS
109	Comparative Analysis of Human and Macaque Monkey CD4: Differences in Formaldehyde Lability and Conformation Experimental Animals, 1998, 47, 23-27.	1.1	3
110	Persistent replication of a hepatitis C virus genotype 1bâ€based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey. Microbiology and Immunology, 2016, 60, 26-34.	1.4	3
111	Peripheral Blood CD4 and CD8 Double-Positive T Cells of Rhesus Macaques Become Vulnerable to Simian Immunodeficiency Virus by In Vitro Stimulation Due to the Induction of CCR5. Journal of Veterinary Medical Science, 2010, 72, 1057-1061.	0.9	2
112	Efficient in vivo depletion of CD8+ T lymphocytes in common marmosets by novel CD8 monoclonal antibody administration. Immunology Letters, 2013, 154, 12-17.	2.5	2
113	A Potent Anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germ Line Immunoglobulin Gene Polymorphism in Rhesus Macaques. Journal of Virology, 2021, 95, .	3.4	2
114	Complete inhibition of SIVmac replication by its capsid mutants. Virus Genes, 1998, 17, 43-48.	1.6	1
115	Divergence and diversity of ULBP2 genes in rhesus and cynomolgus macaques. Immunogenetics, 2014, 66, 161-170.	2.4	1
116	Diversity of <i>ULBP5</i> in Old-World monkeys (Cercopithecidae) and divergence of the <i>ULBP</i> gene family in primates. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 441-453.	3.8	1
117	A Novel Class of HIV-1 Inhibitors Targeting the Vpr-Induced G2-Arrest in Macrophages by New Yeast- and Cell-Based High-Throughput Screening. Viruses, 2022, 14, 1321.	3.3	1
118	Effective Delivery of a Lipophilic 6-chloro-2',3'-dideoxyguanosine(6-Cl-ddG) into Rat Lymphoid Tissues Experimental Animals, 1999, 48, 241-246.	1.1	0
119	Cytolytic Recombinant Vesicular Stomatitis Viruses Expressing STLV-1 Receptor Specifically Eliminate STLV-1 Env-Expressing Cells in an HTLV-1 Surrogate Model In Vitro. Viruses, 2022, 14, 740.	3.3	0