Hyun Kyoung Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8218200/publications.pdf

Version: 2024-02-01

133 papers 2,683 citations

28 h-index 233421 45 g-index

134 all docs

134 docs citations

134 times ranked

2538 citing authors

#	Article	IF	CITATIONS
1	Photoluminescence Properties of CeO ₂ :Eu ³⁺ Nanoparticles Synthesized by a Sol-Gel Method. Journal of Physical Chemistry C, 2009, 113, 610-617.	3.1	116
2	Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film. Chemical Engineering Journal, 2020, 383, 123200.	12.7	103
3	Characterization and photoluminescent enhancement of Li+ corporation effect on CaWO4:Eu3+ phosphor. Journal of Alloys and Compounds, 2012, 511, 123-128.	5.5	100
4	Preparation and luminescent properties of phosphor MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba). Journal of Luminescence, 2010, 130, 1390-1393.	3.1	88
5	Crystal Structure, Electronic Structure, and Optical and Photoluminescence Properties of Eu(III) lon-Doped Lu ₆ Mo(W)O ₁₂ . Inorganic Chemistry, 2011, 50, 12522-12530.	4.0	80
6	Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting. Nano Energy, 2019, 60, 87-94.	16.0	76
7	Versatile fluorescent CaGdAlO4:Eu3+ red phosphor for latent fingerprints detection. Journal of Alloys and Compounds, 2020, 824, 153994.	5.5	70
8	Evolution of CaGd ₂ ZnO ₅ :Eu ³⁺ nanostructures for rapid visualization of latent fingerprints. Journal of Materials Chemistry C, 2017, 5, 4246-4256.	5.5	69
9	Hydrothermal synthesis and enhanced photoluminescence of Tb3+ in Ce3+/Tb3+ doped KGdF4 nanocrystals. Journal of Materials Chemistry, 2011, 21, 10342.	6.7	68
10	Luminescence of a novel cyan emitting Sr10(PO4)6O:Ce3+ phosphor for visualization of latent fingerprints and anti-counterfeiting applications. Sensors and Actuators B: Chemical, 2018, 262, 542-554.	7.8	61
11	Synthesis, Crystal Growth, and Photoluminescence Properties of YAG:Eu ³⁺ Phosphors by High-Energy Ball Milling and Solid-State Reaction. Journal of Physical Chemistry C, 2010, 114, 226-230.	3.1	60
12	Deep red-emitting Ca 14 Al 10 Zn 6 O 35 :Mn 4+ phosphors for WLED applications. Journal of Alloys and Compounds, 2017, 714, 390-396.	5.5	59
13	Investigation of the structure and photoluminescence properties of Eu3+ ion-activated Y6WxMo(1) Tj ETQq1 1 0.	.784314 r	gBT/Overloc
14	Novel red-emitting Y4Zr3O12:Eu3+ nanophosphor for latent fingerprint technology. Dyes and Pigments, 2017, 141, 348-355.	3.7	52
15	Versatile fluorescent Gd2MoO6:Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications. Ceramics International, 2019, 45, 11591-11599.	4.8	51
16	Synthesis and luminescent properties of low concentration Dy3+:GAP nanophosphors. Optical Materials, 2009, 31, 1210-1214.	3.6	49
17	Color-conversion and photoluminescence properties of Ba2MgW(Mo)O6:Eu phosphor. Journal of Alloys and Compounds, 2011, 509, 8788-8793.	5.5	49
18	Luminescence investigations of Sr3SiO5:Eu2+ orange–yellow phosphor for UV-based white LED. Ceramics International, 2014, 40, 12503-12508.	4.8	48

#	Article	IF	CITATIONS
19	Rapid visualization of latent fingerprints with Eu-doped La2Ti2O7. Journal of Luminescence, 2018, 201, 275-283.	3.1	46
20	The effective fingerprint detection application using Gd2Ti2O7:Eu3+ nanophosphors. Journal of Alloys and Compounds, 2018, 741, 246-255.	5.5	45
21	Hydrothermal Synthesis and White Luminescence of Dy ³⁺ â€Doped NaYF ₄ Microcrystals. Journal of the American Ceramic Society, 2011, 94, 3405-3411.	3.8	44
22	Green and red emitting YBO3:Ln3+ (Ln=Eu, Tb) phosphors for detection of latent fingerprint. Journal of Alloys and Compounds, 2019, 789, 367-374.	5.5	42
23	Photoluminescent properties of Ln2O3:Eu3+ (Ln=Y, Lu and Gd) prepared by hydrothermal process and sol–gel method. Materials Chemistry and Physics, 2010, 119, 471-477.	4.0	41
24	Li doping effect on the luminescent characteristics of YVO4:Eu3+ thin films grown by pulsed laser deposition. Applied Surface Science, 2007, 253, 8273-8277.	6.1	35
25	Improved luminescent behavior of YVO4:Eu3+ ceramic phosphors by Li contents. Solid State Sciences, 2010, 12, 1445-1448.	3.2	33
26	Controlled Fabrication and Shape-Dependent Luminescence Properties of Hexagonal NaCeF4, NaCeF4:Tb3+Nanorods via Polyol-Mediated Solvothermal Route. Inorganic Chemistry, 2011, 50, 3387-3393.	4.0	31
27	Sol–gel synthesis, structure and photoluminescence properties of nanocrystalline Lu2MoO6:Eu. Materials Research Bulletin, 2011, 46, 1352-1358.	5. 2	31
28	Color rendering improvement of the YAG:Ce3+ phosphors by co-doping with Gd3+ ions. Ceramics International, 2016, 42, 2204-2208.	4.8	30
29	Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode. Solid State Sciences, 2014, 27, 43-46.	3.2	28
30	High temperature synthesis of yellow-emitting Y2BaAl4SiO12:Ce3+ phosphors for WLED applications. Chemical Physics Letters, 2018, 708, 66-70.	2.6	28
31	Hydrothermal synthesis and optical characteristics of Eu3+ in Zn2SnO4 nanocrystals. Current Applied Physics, 2009, 9, 1360-1364.	2.4	27
32	Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors. Ceramics International, 2016, 42, 5737-5742.	4.8	26
33	Development of red-emitting Ba2LaSbO6:Mn4+ phosphors for latent fingerprint detection. Ceramics International, 2021, 47, 19496-19504.	4.8	26
34	Luminescence characteristic of YVO4:Eu3+ thin film phosphors by Li doping. Thin Solid Films, 2008, 516, 5577-5581.	1.8	25
35	Combustion synthesis and luminescent properties of the Eu3+-doped yttrium oxysulfide nanocrystalline. Optical Materials, 2008, 31, 58-62.	3.6	24
36	Host Sensitized White Luminescence of Dy[sup 3+] Activated GdPO[sub 4] Phosphors. Journal of the Electrochemical Society, 2011, 158, J6.	2.9	24

3

#	Article	IF	CITATIONS
37	Tunable photoluminescence properties of Eu(II)- and Sm(III)-coactivated Ca_9Y(PO_4)_7 and energy transfer between Eu(II) and Sm(III). Optical Materials Express, 2012, 2, 443.	3.0	22
38	RE3+ (RE = Ce3+, Tb3+) doped BaGdF5 nanocrystals: Synthesis, optical and magnetic properties, and energy transfer. Materials Research Bulletin, 2012, 47, 1704-1708.	5.2	21
39	Phosphor-in-glass (PiG) plates for blue laser diode driven white-light emission. Journal of Alloys and Compounds, 2020, 842, 155922.	5.5	21
40	Synthesis and enhanced luminescence properties of Li-doped CaTiO3:Pr3+ ceramic phosphors. Solid State Sciences, 2011, 13, 1420-1423.	3.2	20
41	Photoluminescent properties of near-infrared excited blue emission in Yb, Tm co-doped LaGaO3 phosphors. Ceramics International, 2014, 40, 13357-13361.	4.8	20
42	La ₂ Sn ₂ O ₇ :Eu ³⁺ Micronanospheres: Hydrothermal Synthesis and Luminescent Properties. Crystal Growth and Design, 2009, 9, 616-621.	3.0	19
43	Synthesis, crystal growth, phase transformation and photoluminescence properties of GdVO4:Eu3+ micro-rods by a high-energy ball milling method. CrystEngComm, 2011, 13, 4723.	2.6	19
44	Luminescent characteristics of CaTiO3:Pr3+ thin films prepared by pulsed laser deposition method with various substrates. Applied Surface Science, 2009, 255, 5062-5066.	6.1	18
45	Preparation and Photoluminescence Properties of Gd2O3:Eu3+ Inverse Opal Photonic Crystals. Journal of Physical Chemistry C, 2010, 114, 19891-19894.	3.1	18
46	Structural and luminescent properties of blue-emitting Sr2CeO4 phosphors by high-energy ball milling method. Ceramics International, 2015, 41, 1249-1254.	4.8	18
47	Gd2O3:Pr3+ nanospheres as bi-functional contrast agents for optical and magnetic resonance imaging properties. Ceramics International, 2019, 45, 5958-5964.	4.8	18
48	Spectroscopy of nanocrystalline TiO2:Eu3+ phosphors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 82-86.	4.7	17
49	Synthesis, Characterization, and Luminescent Properties of Pr3+-Doped Bulk and Nanocrystalline BaTiO3Phosphors. Journal of Physical Chemistry C, 2008, 112, 5724-5728.	3.1	17
50	Structure, Charge Transfer Bands and Photoluminescence of Nanocrystals Tetragonal and Monoclinic ZrO2:Eu. Journal of Nanoscience and Nanotechnology, 2011, 11, 350-357.	0.9	17
51	Surface morphology and photoluminescence characteristics of Eu-doped YVO4 thin films. Optical Materials, 2006, 28, 703-708.	3.6	16
52	Solvothermal synthesis and luminescence properties of NaYF4:Ln3+ (Eu3+, Tb3+, Yb3+/Er3+) nano- and microstructures. Optical Materials, 2012, 34, 1007-1012.	3.6	16
53	Photoluminescence investigations of YAC:Eu nanocomposite powder by high-energy ball milling. Current Applied Physics, 2009, 9, e86-e88.	2.4	15

 $Synthesis, crystal\ structure\ and\ photoluminescent\ properties\ of\ Eu3+\ ion-activated\ R4MoO9\ (R\^{A}=\^{A}Y,\ Gd,)\ Tj\ ETQqQ_{4.0}\ O\ rgBT_{15}/Overlock$

54

#	Article	IF	Citations
55	Preparation and photoluminescence properties of nano-sized SrZnO2:Sm3+ phosphor powders obtained by high-energy ball milling. Ceramics International, 2015, 41, 991-994.	4.8	15
56	Polyol-mediated solvothermal synthesis and luminescence properties of CeF3, and CeF3:Tb3+nanocrystals. Journal of Solid State Chemistry, 2011, 184, 246-251.	2.9	14
57	Cyan-emitting BaZrSi3O9:Eu2+phosphors for near-UV based white light-emitting diodes. Materials Letters, 2016, 173, 68-71.	2.6	14
58	Luminescence Properties and Crystallinity of Sm3+-doped NaGd(WO4)2 Powder Phosphors. Journal of the Korean Physical Society, 2010, 57, 1760-1763.	0.7	14
59	Hydrothermal synthesis and optical properties of Eu3+ doped NaREF4 (RE = Y, Gd), LnF3 (Ln = Y, La), and YF3Â \cdot 1.5NH3 micro/nanocrystals. Materials Research Bulletin, 2011, 46, 1553-1559.	5.2	13
60	Synthesis and photoluminescence of novel 3D flower-like CaMoO4 architectures hierarchically self-assembled with tetragonal bipyramid nanocrystals. Optical Materials, 2015, 43, 10-17.	3.6	13
61	Light-extraction enhancement of white LEDs with different phases of TiO 2:0.01Eu 3+ spheres. Current Applied Physics, 2017, 17, 527-532.	2.4	13
62	Li-doping effect on enhancement of photoluminescence in Gd2O3:Eu3+ films. Optical Materials, 2006, 28, 693-697.	3.6	12
63	Li-doping effect on the photoluminescence behaviors of Eu-doped Y2â^'xGdxO3 ceramic phosphors. Journal of Luminescence, 2007, 122-123, 87-90.	3.1	12
64	Photoluminescent properties of Y1â^'xGdxVO4:Eu3+ powder phosphors. Current Applied Physics, 2009, 9, S226-S229.	2.4	12
65	Crystalline and photoluminescence characteristics of YVO4:Sm3+ thin films grown by pulsed laser deposition under oxygen pressure. Journal of Luminescence, 2009, 129, 492-495.	3.1	12
66	Investigation of red-emitting Bi4Si3O12:Eu3+ phosphor under the deep UV irradiation as a novel material for white light and color tunable emission. Optik, 2018, 166, 69-76.	2.9	12
67	Synthesis and luminescent properties of europium-activated Ca2SnO4 phosphors by sol–gel method. Journal of Luminescence, 2009, 129, 1669-1672.	3.1	11
68	Enhancement of the luminescent characteristics of Li-doped CaTiO ₃ â€%:â€%Pr ³⁺ thin films grown by pulsed laser deposition. Journal Physics D: Applied Physics, 2009, 42, 085411.	2.8	11
69	Synthesis and spectral properties of nanocrystalline Eu3+-doped pyrochlore oxide M2Sn2O7 (MÂ=ÂGd) Tj ETQq1	1 _{2.4} 78431	4 _{fg} BT/Ov
70	Hydrothermal synthesis, phase evolution, and optical properties of Eu3+-doped KF–YF3 system materials. Journal of Materials Research, 2012, 27, 2988-2995.	2.6	11
71	Luminescence properties of stoichiometric EuM ₂ S ₄ (M = Ga, Al) conversion phosphors for white LED applications. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2620-2625.	1.8	11
72	Sintering temperature effect of divalent europium ion doped tetra-calcium phosphate phosphors for latent fingerprint detection. Optical Materials, 2018, 81, 37-44.	3.6	11

#	Article	IF	CITATIONS
73	Luminescence Characteristics of Pr ³⁺ Ion Doped CaTiO ₃ Nanopowder Phosphors Synthesized by Solvothermal Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 6208-6212.	0.9	10
74	Effect of Yb ³⁺ Concentrations on the Upconversion Luminescence Properties of ZrO ₂ :Er ³⁺ ,Yb ³⁺ Phosphors. Japanese Journal of Applied Physics, 2013, 52, 01AM02.	1.5	10
75	Photoluminescent properties of novel red-emitting GdSr2AlO5:Eu3+ phosphors. Optik, 2016, 127, 10614-10620.	2.9	10
76	Enhanced Red Emission of LaVO4:Eu3+ Phosphors by Li-doping. Journal of the Korean Physical Society, 2010, 57, 1764-1768.	0.7	10
77	Efficiency enhancement by aluminum addition to CaTiO3:Pr3+ phosphor thin films. Thin Solid Films, 2008, 516, 1613-1616.	1.8	9
78	Photoluminescence properties of new deep red-emitting Mn2+-activated CaLaGa3S6O phosphors. Journal of the Korean Physical Society, 2012, 61, 1075-1079.	0.7	9
79	Up-converted luminescence in Yb, Tm co-doped LaGaO3 phosphors by high-energy ball milling and solid state reaction. Solid State Sciences, 2012, 14, 236-240.	3.2	9
80	Surface morphology and crystalline phase dependent photoluminescence of Gd2O3:Eu3+ thin films grown on various substrates. Thin Solid Films, 2006, 515, 2497-2500.	1.8	8
81	Hydrothermal Synthesis and Luminescent Properties of Uniform CaSnO[sub 3]:Eu[sup 3+] Microcrystals with Controlled Morphology. Journal of the Electrochemical Society, 2009, 156, J308.	2.9	8
82	Concentration Enhanced Upconversion Luminescence in ZrO2:Ho3+, Yb3+ Nanophosphors. Journal of Nanoscience and Nanotechnology, 2013, 13, 4006-4009.	0.9	8
83	Biocompatible sphere, square prism and hexagonal rod Gd2O3:Eu3+@SiO2 nanoparticles: The effect of morphology on multi-modal imaging. Colloids and Surfaces B: Biointerfaces, 2018, 172, 224-232.	5.0	8
84	Correlated color temperature alteration with changing the position of carbon dot film for warm WLEDs. Dyes and Pigments, 2021, 186, 109063.	3.7	8
85	SOL–GEL COMBUSTION SYNTHESIS AND LUMINESCENT PROPERTIES OF NANOCRYSTALLINE Y ₃ : Al ₅ O ₁₂ : Eu < PHOSPHORS. Surface Review and Letters, 2010, 17, 73-79.	sup#3+ </td <td>sup»</td>	sup»
86	Synthesis, Crystal Growth of Eu ³⁺ -Doped YVO ₄ Micro-Rods Phosphors by Using High-Energy Ball Milling Method and Their Photoluminescence Properties. Journal of the Electrochemical Society, 2012, 159, J227-J230.	2.9	7
87	Low-temperature synthesis of luminescent and mesoporous \hat{l}^2 -NaYF4 microspheres via polyol-mediated solvothermal route. RSC Advances, 2013, 3, 4763.	3.6	7
88	Hydrothermal Synthesis and Photoluminescence Investigation of NaY(MoO ₄) ₂ Eu ³⁺ Nanophosphor. Journal of Nanoscience and Nanotechnology, 2014, 14, 8724-8728.	0.9	7
89	Synthesis, characterization and luminescence properties of CaMoO4:Eu3+ red phosphor for use in light-emitting diodes. Journal of the Korean Physical Society, 2015, 66, 1895-1900.	0.7	7
90	Ultra-fast synthesis of carbon dots using the wasted coffee residues for environmental remediation. Current Applied Physics, 2022, 36, 9-15.	2.4	7

#	Article	IF	CITATIONS
91	Synthesis, characterization and luminescence properties of Eu3+-doped La2Sn2O7 nanospheres. Current Applied Physics, 2009, 9, e89-e91.	2.4	6
92	Ce ³⁺ /Tb ³⁺ activated GdF ₃ , KGdF ₄ , and CeF ₃ submicro/nanocrystals: Synthesis, phase evolution, and optical properties. Journal of Materials Research, 2011, 26, 2916-2923.	2.6	6
93	Structure Dependence of the Photoluminescence Properties of Eu3+lon-ActivatedR2Mo4O15(R= Y, La,) Tj ETQq1	1 _{2.9} 78431	l4rgBT/O√
94	Synthesis and photoluminescence characteristics of BaY2ZnO5:Eu3+ phosphors fabricated by using both high-energy ball milling and a solid-state reaction. Journal of the Korean Physical Society, 2012, 61, 2011-2016.	0.7	6
95	Fine yellow GdSr2AlO5:Ce3+ phosphor for white LEDs prepared by high energy ball milling process. Ceramics International, 2016, 42, 4594-4599.	4.8	6
96	Multi modality of hollow tube Gd2O3:Eu3+ nanoparticles by using nonpolar solvent. Journal of Alloys and Compounds, 2017, 725, 807-817.	5.5	6
97	Influence of the variation Yb3+ concentration and sintering temperature in GdVO4: Tm3+/Yb3+ blue emission phosphors. Optik, 2017, 131, 475-482.	2.9	6
98	Enhanced luminescence of Gd2O3:Eu3+ buffer-layered Y2O3:Eu3+ thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 159-163.	3.5	5
99	Crystallinity and surface roughness dependent photoluminescence of Y1â^'xGdxVO4:Eu3+ thin films grown on Si (100) substrate. Thin Solid Films, 2009, 517, 5137-5140.	1.8	5
100	Luminescent Properties of SrZnO2:Tb3+ Hybrid Thin Film Phosphors Grown by Pulsed Laser Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 871-875.	0.9	5
101	Ultra-fast synthesis and photoluminescence properties of red-emitting NaBiF4:Eu3+ nanophosphors by various NH4F concentrations. Journal of Luminescence, 2019, 211, 176-182.	3.1	5
102	Synthesis and Characterization of the Intense Red Phosphor AgEu(MoO4)2 for Blue GaN-Based LED Chips. Journal of the Korean Physical Society, 2009, 54, 720-724.	0.7	5
103	Photoluminescence and cathodoluminescence of YVO4:Sm3+ thin films prepared by pulsed laser deposition method with various substrates. Applied Physics A: Materials Science and Processing, 2008, 92, 337-340.	2.3	4
104	Photoluminescence characteristics of Li-doped CaTiO3:Pr3+ thin films grown on Si (100) substrate by PLD. Thin Solid Films, 2010, 518, 6219-6222.	1.8	4
105	Crystal field effects on the photoluminescence properties of Y1â^x La x VO4:Eu3+ phosphors. Applied Physics A: Materials Science and Processing, 2011, 104, 383-386.	2.3	4
106	Hydrothermal Synthesis and Optical Properties of Eu ³⁺ -Doped CaSnO ₃ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 1629-1631.	0.9	4
107	Synthesis and Luminescence Properties Behavior of Eu3+-doped Nanocrystalline and Bulk GdVO4 Phosphors by High-Energy Ball Milling and Solid State Reaction. Journal of Nanoscience and Nanotechnology, 2011, 11, 474-478.	0.9	4
108	Crystal growth and luminescence properties of the Nd:GdVO4 micro-rods: A promising laser material. Ceramics International, 2015, 41, 7207-7210.	4.8	4

#	Article	IF	CITATIONS
109	Effects of sintering temperature on Ce3+-doped Ca3Y2Si3O12 blue-emitting oxide phosphors. Journal of the Korean Physical Society, 2015, 67, 371-375.	0.7	4
110	Synthesis of TiO 2 spheres and their utilization in the enhancement light-extraction efficiency of WLEDs. Materials Research Bulletin, 2017, 94, 456-462.	5.2	4
111	Improvement of luminescence properties of NaYF 4 :Yb 3+ /Er 3+ upconversion materials by a crossâ€relaxation mechanism based on coâ€doped Ho 3+ ion concentrations. Luminescence, 2021, 36, 812-818.	2.9	4
112	Gd(OH) ₃ with multiform morphologies and MRI contrast agent properties by different solvents. Inorganic Chemistry Frontiers, 2017, 4, 1287-1295.	6.0	4
113	SURFACE MORPHOLOGY AND PHOTOLUMINESCENCE CHARACTERISTICS OF Sm-DOPED YVO4 THIN FILMS. Surface Review and Letters, 2007, 14, 873-878.	1.1	3
114	Enhanced luminescence properties of Li-doped CaTiO3:Pr3+ thin films grown by PLD under various lithium ion contents. Current Applied Physics, 2011, 11, S180-S183.	2.4	3
115	A New Deep Red-Emitting Mn ²⁺ -Activated SrLaGa ₃ S ₆ O Phosphor. Key Engineering Materials, 2012, 531-532, 145-148.	0.4	3
116	Synthesis, phase composition modification, and optical properties of Ce3+/Tb3+ activated KGdF4 and GdF3 submicrocrystals. Journal of Solid State Chemistry, 2012, 187, 45-50.	2.9	3
117	Synthesis and Luminescent Properties of Gd ₂ MoO ₆ :Eu ³⁺ . Journal of Nanoscience and Nanotechnology, 2015, 15, 7765-7769.	0.9	3
118	Enhancement of light extraction efficiency with different molar amount of europium in TiO2:Eu3+ for WLEDs. Optik, 2017, 136, 595-601.	2.9	3
119	Microwaveâ€assisted sintering synthesis of greenishâ€yellow emitting Sr ₂ SiO ₄ :Eu ²⁺ phosphors. Luminescence, 2018, 33, 1081-1086.	2.9	3
120	Microwave-assisted sintering synthesis and luminescence characteristics of Sr3SiO5:Eu2+ phosphors for Eu2+ concentrations. Optik, 2018, 172, 1205-1210.	2.9	3
121	Synthesis and optical properties of 10mol% Ce3+, 5mol% Tb3+ co-doped KGdF4 and GdF3 submicro/nanocrystals. Optics Communications, 2011, 284, 5453-5456.	2.1	2
122	Crystal growth and photoluminescence characteristics of Ca2MgSi2O7:Eu3+ thin films grown by pulsed laser deposition. Materials Research Bulletin, 2012, 47, 2871-2874.	5.2	2
123	Crystal Growth and Photoluminescence Properties of Sm ³⁺ Doped CeO ₂ Nanophosphors by Solvothermal Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 6060-6063.	0.9	2
124	Orange–red light emitting europium-doped calcium molybdate phosphor prepared by high-energy ball milling. Optical Engineering, 2016, 55, 097108.	1.0	2
125	Low-Temperature Synthesis of CaTiO ₃ Nanocrystals Doped with Pr ³⁺ Ions and Their Luminescence. Journal of Nanoscience and Nanotechnology, 2009, 9, 3982-3986.	0.9	1
126	Three-Dimensionally Ordered Macroporous ZrO ₂ :Tb ³⁺ Films: Synthesis, Characterization, and Photoluminescence Properties. Japanese Journal of Applied Physics, 2011, 50, 01AK06.	1.5	1

#	Article	IF	CITATIONS
127	Luminescent Properties of Eu ³⁺ -Doped BaGd ₂ ZnO ₅ Phosphors for White LED. Key Engineering Materials, 2012, 531-532, 22-26.	0.4	1
128	Photoluminescence Property of a Eu $^{2+}$ -Doped Ba $_{2}$ SiO $_{4}$ Phosphor Fabricated by Using the High-Energy Ball-Milling Method. New Physics: Sae Mulli, 2016, 66, 822-827.	0.1	1
129	Grystal growth and photoluminescence properties of Eu ³⁺ -doped Y <inf>3</inf> Al <inf>5</inf> 0 <inf>12</inf> nanocrystals by high-energy ball milling., 2010,,.		0
130	Synthesis and optical properties of Eu ³⁺ -doped CaSnO <inf>3</inf> nanocrystals by hydrothermal method. , 2010, , .		0
131	Blending Lumogen-encapsulated nanoparticles as white OLED materials. Molecular Crystals and Liquid Crystals, 2017, 659, 154-159.	0.9	0
132	Luminescence Properties of a Yellow GdSr $\{2\}$ AlO $\{5\}$:Ce $\{3+\}$ Phosphor for a White LED. New Physics: Sae Mulli, 2015, 65, 1181-1186.	0.1	0
133	Development of a LED's Heat Sink by Using a Biodegradable Composite Plastic and Its Characterization. New Physics: Sae Mulli, 2016, 66, 511-516.	0.1	0