Tatyana A Rand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8216206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pests associated with two brassicaceous oilseeds and a cover crop mix under evaluation as fallow replacements in dryland production systems of the northern Great Plains. Canadian Entomologist, 2022, 154, .	0.8	1
2	Effect of Previous Crop Roots on Soil Compaction in 2 Yr Rotations under a No-Tillage System. Land, 2021, 10, 202.	2.9	14
3	Effects of Landscape Composition on Wheat Stem Sawfly (Hymenoptera: Cephidae) and Its Associated Braconid Parasitoids. Journal of Economic Entomology, 2021, 114, 72-81.	1.8	2
4	Modeling the combined impacts of host plant resistance and biological control on the population dynamics of a major pest of wheat. Pest Management Science, 2020, 76, 2818-2828.	3.4	9
5	Aphid Honeydew Enhances Parasitoid Longevity to the Same Extent as a High-Quality Floral Resource: Implications for Conservation Biological Control of the Wheat Stem Sawfly (Hymenoptera: Cephidae). Journal of Economic Entomology, 2020, 113, 2022-2025.	1.8	13
6	Tri-trophic interactions are resilient to large shifts in precipitation levels in a wheat agroecosystem. Agriculture, Ecosystems and Environment, 2020, 301, 106981.	5.3	2
7	Post-dispersal factors influence recruitment patterns but do not override the importance of seed limitation in populations of a native thistle. Oecologia, 2020, 193, 143-153.	2.0	3
8	Do Floral Resources Benefit the Herbivorous Sawfly, <i>Cephus cinctus</i> (Hymenoptera: Cephidae), a Major Pest of Wheat in North America?. Journal of Economic Entomology, 2019, 112, 565-570.	1.8	5
9	Oilfield Reclamation Recovers Productivity but not Composition of Arthropod Herbivores and Predators. Environmental Entomology, 2019, 48, 299-308.	1.4	2
10	Quantifying Temporal Variation in the Benefits of Aphid Honeydew for Biological Control of Alfalfa Weevil (Coleoptera: Curculionidae). Environmental Entomology, 2019, 48, 141-146.	1.4	8
11	Decoupled recovery of ecological communities after reclamation. PeerJ, 2019, 7, e7038.	2.0	3
12	Evaluating the establishment success of Microctonus aethiopoides (Hymenoptera: Braconidae), a parasitoid of the alfalfa weevil (Coleoptera: Curculionidae), across the northern Great Plains of North America. Canadian Entomologist, 2018, 150, 274-277.	0.8	2
13	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
14	Using matrix population models to inform biological control management of the wheat stem sawfly, Cephus cinctus. Biological Control, 2017, 109, 27-36.	3.0	13
15	Assessing the role of generalist predators in the biological control of alfalfa weevil (Coleoptera:) Tj ETQq1 1 0.784	4314 rgBT 0.8	Qverlock 1
16	Host Plants of the Wheat Stem Sawfly (Hymenoptera: Cephidae). Environmental Entomology, 2017, 46, 847-854.	1.4	14
17	Nonâ€random foodâ€web assembly at habitat edges increases connectivity and functional redundancy. Ecology, 2017, 98, 995-1005	3.2	15
18	Facilitative and competitive interaction components among New England salt marsh plants. PeerJ, 2017, 5, e4049.	2.0	7

Tatyana A Rand

#	Article	IF	CITATIONS
19	Assessing phenological synchrony between the Chinese sawfly, <i>Cephus fumipennis</i> (Hymenoptera: Cephidae), its egg-larval parasitoid, <i>Collyria catoptron</i> (Hymenoptera:) Tj ETQq1 1 0.7843 control. Canadian Entomologist, 2016, 148, 482-492.	814 rgBT /0	Overlock 10
20	The Effects of Crop Intensification on the Diversity of Native Pollinator Communities. Environmental Entomology, 2016, 45, 865-872.	1.4	32
21	Preliminary evaluation of the parasitoid wasp, <i>Collyria catoptron</i> , as a potential biological control agent against the wheat stem sawfly, <i>Cephus cinctus</i> , in North America. Biocontrol Science and Technology, 2016, 26, 61-71.	1.3	8
22	Effects of invasive knapweed (<i>Centaurea stoebe</i> subsp. <i>micranthos</i>) on a threatened native thistle (<i>Cirsium pitcheri</i>) vary with environment and life stage. Botany, 2015, 93, 543-558.	1.0	7
23	Communityâ€level net spillover of natural enemies from managed to natural forest. Ecology, 2015, 96, 193-202.	3.2	53
24	Complementarity and redundancy of interactions enhance attack rates and spatial stability in host–parasitoid food webs. Ecology, 2014, 95, 1888-1896.	3.2	79
25	Increased area of a highly suitable host crop increases herbivore pressure in intensified agricultural landscapes. Agriculture, Ecosystems and Environment, 2014, 186, 135-143.	5.3	52
26	Land use intensification differentially benefits alien over native predators in agricultural landscape mosaics. Diversity and Distributions, 2013, 19, 749-759.	4.1	37
27	Host Density Drives Spatial Variation in Parasitism of the Alfalfa Weevil, <i>Hypera postica</i> , Across Dryland and Irrigated Alfalfa Cropping Systems. Environmental Entomology, 2013, 42, 116-122.	1.4	19
28	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
29	Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems and Environment, 2012, 146, 34-43.	5.3	413
30	Exotic weevil invasion increases floral herbivore community density, function, and impact on a native plant. Oikos, 2012, 121, 85-94.	2.7	7
31	Effects of genotypic variation in stem solidity on parasitism of a grass-mining insect. Basic and Applied Ecology, 2012, 13, 250-259.	2.7	13
32	Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography, 2012, 35, 97-104.	4.5	59
33	Priority resource access mediates competitive intensity between an invasive weevil and native floral herbivores. Biological Invasions, 2011, 13, 2233-2248.	2.4	12
34	Unexpectedly high levels of parasitism of wheat stem sawfly larvae in postcutting diapause chambers. Canadian Entomologist, 2011, 143, 455-459.	0.8	6
35	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	3.0	64
36	Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems. PLoS Biology, 2008, 6, e122.	5.6	210

Tatyana A Rand

#	Article	IF	CITATIONS
37	Author Sequence and Credit for Contributions in Multiauthored Publications. PLoS Biology, 2007, 5, e18.	5.6	413
38	Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology and Evolution, 2007, 22, 489-496.	8.7	692
39	VARIATION IN HERBIVORE-MEDIATED INDIRECT EFFECTS OF AN INVASIVE PLANT ON A NATIVE PLANT. Ecology, 2007, 88, 413-423.	3.2	27
40	Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos, 2007, 116, 1353-1362.	2.7	112
41	Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 2006, 9, 603-614.	6.4	518
42	Spillover of Agriculturally Subsidized Predators as a Potential Threat to Native Insect Herbivores in Fragmented Landscapes. Conservation Biology, 2006, 20, 1720-1729.	4.7	94
43	Assessment of ecological risks in weed biocontrol: Input from retrospective ecological analyses. Biological Control, 2005, 35, 253-264.	3.0	46
44	COMPETITION, FACILITATION, AND COMPENSATION FOR INSECT HERBIVORY IN AN ANNUAL SALT MARSH FORB. Ecology, 2004, 85, 2046-2052.	3.2	37
45	Landscape-scale patterns of biological invasions in shoreline plant communities. Oikos, 2004, 107, 531-540.	2.7	69
46	EXOTIC WEED INVASION INCREASES THE SUSCEPTIBILITY OF NATIVE PLANTS TO ATTACK BY A BIOCONTROL HERBIVORE. Ecology, 2004, 85, 1548-1554.	3.2	73
47	HERBIVORE-MEDIATED APPARENT COMPETITION BETWEEN TWO SALT MARSH FORBS. Ecology, 2003, 84, 1517-1526.	3.2	57
48	Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution. Oecologia, 2002, 132, 549-558.	2.0	52
49	Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient. Journal of Ecology, 2000, 88, 608-621.	4.0	125
50	Effects of environmental context on the susceptibility of Atriplex patula to attack by herbivorous beetles. Oecologia, 1999, 121, 39-46.	2.0	51