
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42, 2679-2724.	38.1	1,576
2	Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals. Small, 2010, 6, 2272-2280.	10.0	505
3	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 2021, 121, 13342-13453.	47.7	237
4	Unraveling the Evolution and Nature of the Plasmons in (Au Core)–(Ag Shell) Nanorods. Advanced Materials, 2012, 24, OP200-7.	21.0	225
5	Advanced Plasmonic Materials for Dynamic Color Display. Advanced Materials, 2018, 30, e1704338.	21.0	176
6	Angle- and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers. ACS Nano, 2010, 4, 3053-3062.	14.6	158
7	Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures. Advanced Optical Materials, 2014, 2, 65-73.	7.3	158
8	Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Accounts of Chemical Research, 2019, 52, 2136-2146.	15.6	133
9	Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength. Journal of Physical Chemistry C, 2009, 113, 17691-17697.	3.1	130
10	(Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths. Advanced Materials, 2014, 26, 3282-3289.	21.0	129
11	Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color. Advanced Materials, 2016, 28, 9956-9960.	21.0	128
12	Observation of the Fano Resonance in Gold Nanorods Supported on High-Dielectric-Constant Substrates. ACS Nano, 2011, 5, 6754-6763.	14.6	124
13	Universal Scaling and Fano Resonance in the Plasmon Coupling between Gold Nanorods. ACS Nano, 2011, 5, 5976-5986.	14.6	119
14	Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures. ACS Nano, 2014, 8, 8208-8216.	14.6	116
15	Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. ACS Nano, 2015, 9, 12542-12551.	14.6	109
16	Distinct Plasmonic Manifestation on Gold Nanorods Induced by the Spatial Perturbation of Small Gold Nanospheres. Nano Letters, 2012, 12, 1424-1430.	9.1	106
17	Mass-Based Photothermal Comparison Among Gold Nanocrystals, PbS Nanocrystals, Organic Dyes, and Carbon Black. Journal of Physical Chemistry C, 2013, 117, 8909-8915.	3.1	97
18	Plasmon-Controlled Förster Resonance Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 8287-8296.	3.1	96

#	Article	IF	CITATIONS
19	Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Letters, 2016, 16, 5183-5190.	9.1	92
20	A Gold Nanocrystal/Poly(dimethylsiloxane) Composite for Plasmonic Heating on Microfluidic Chips. Advanced Materials, 2012, 24, 94-98.	21.0	88
21	Room-temperature valleytronic transistor. Nature Nanotechnology, 2020, 15, 743-749.	31.5	87
22	Plasmonic–Molecular Resonance Coupling: Plasmonic Splitting versus Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 14088-14095.	3.1	85
23	Plasmonic Properties of Single Multispiked Gold Nanostars: Correlating Modeling with Experiments. Langmuir, 2012, 28, 8979-8984.	3.5	80
24	Lightâ€Driven Rotation of Plasmonic Nanomotors. Advanced Functional Materials, 2018, 28, 1706272.	14.9	77
25	Fano Resonance in (Gold Core)â^'(Dielectric Shell) Nanostructures without Symmetry Breaking. Small, 2012, 8, 1503-1509.	10.0	63
26	Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Indexâ€Based Sensing Characteristics. Small, 2014, 10, 802-811.	10.0	59
27	Evaluating Conditions for Strong Coupling between Nanoparticle Plasmons and Organic Dyes Using Scattering and Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20588-20596.	3.1	58
28	Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes. ACS Nano, 2013, 7, 9354-9365.	14.6	57
29	Identifying the functional groups effect on passivating perovskite solar cells. Science Bulletin, 2020, 65, 1726-1734.	9.0	52
30	Comparison of the plasmonic performances between lithographically fabricated and chemically grown gold nanorods. Physical Chemistry Chemical Physics, 2015, 17, 10861-10870.	2.8	46
31	Site-Selective Deposition of Metal–Organic Frameworks on Gold Nanobipyramids for Surface-Enhanced Raman Scattering. Nano Letters, 2021, 21, 8205-8212.	9.1	46
32	Observation of chiral and slow plasmons in twisted bilayer graphene. Nature, 2022, 605, 63-68.	27.8	45
33	Directional Control of Light with Nanoantennas. Advanced Optical Materials, 2021, 9, .	7.3	44
34	Nanoantennaâ€ S andwiched Graphene with Giant Spectral Tuning in the Visibleâ€ŧoâ€Nearâ€Infrared Region. Advanced Optical Materials, 2014, 2, 162-170.	7.3	39
35	How to Utilize Excited Plasmon Energy Efficiently. ACS Nano, 2021, 15, 10759-10768.	14.6	39
36	Metasurfaces and Colloidal Suspensions Composed of 3D Chiral Si Nanoresonators. Advanced Materials, 2017, 29, 1701352.	21.0	39

#	Article	IF	CITATIONS
37	Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale, 2020, 12, 8095-8108.	5.6	38
38	Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis. ACS Nano, 2017, 11, 10053-10061.	14.6	34
39	Antibody–Antigen Interaction Dynamics Revealed by Analysis of Single-Molecule Equilibrium Fluctuations on Individual Plasmonic Nanoparticle Biosensors. ACS Nano, 2018, 12, 9958-9965.	14.6	34
40	Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres. ACS Nano, 2010, 4, 6565-6572.	14.6	33
41	Brownian fluctuations of an optically rotated nanorod. Optica, 2017, 4, 746.	9.3	33
42	Continuousâ€Gradient Plasmonic Nanostructures Fabricated by Evaporation on a Partially Exposed Rotating Substrate. Advanced Materials, 2016, 28, 4658-4664.	21.0	32
43	Plasmon Excited Ultrahot Carriers and Negative Differential Photoresponse in a Vertical Graphene van der Waals Heterostructure. Nano Letters, 2019, 19, 3295-3304.	9.1	28
44	Plasmonic Color Laser Printing inside Transparent Gold Nanodiskâ€Embedded Poly(dimethylsiloxane) Matrices. Advanced Optical Materials, 2020, 8, 1901605.	7.3	27
45	Anapole States and Toroidal Resonances Realized in Simple Gold Nanoplateâ€onâ€Mirror Structures. Advanced Optical Materials, 2020, 8, 2001173.	7.3	27
46	Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances. ACS Nano, 2018, 12, 12541-12550.	14.6	24
47	Assembly of gold nanorods functionalized by zirconium-based metal–organic frameworks for surface enhanced Raman scattering. Nanoscale, 2022, 14, 5561-5568.	5.6	22
48	Chirality-selective transparency induced by lattice resonance in bilayer metasurfaces. Photonics Research, 2021, 9, 484.	7.0	21
49	Heterostructures Built through Site elective Deposition on Anisotropic Plasmonic Metal Nanocrystals and Their Applications. Small Structures, 2021, 2, .	12.0	21
50	Switching plasmonic Fano resonance in gold nanosphere–nanoplate heterodimers. Nanoscale, 2019, 11, 9641-9653.	5.6	19
51	Strengthening Fano resonance on gold nanoplates with gold nanospheres. Nanoscale, 2020, 12, 1975-1984.	5.6	18
52	All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres. Nano Letters, 2022, 22, 1406-1414.	9.1	18
53	Photothermal DNA Release from Laser-Tweezed Individual Gold Nanomotors Driven by Photon Angular Momentum. ACS Photonics, 2018, 5, 2168-2175.	6.6	15
54	Fabrication of plasmonic nanostructures by hole-mask colloidal lithography: Recent development. Applied Materials Today, 2019, 15, 6-17.	4.3	15

#	Article	IF	CITATIONS
55	(Metal yolk)/(porous ceria shell) nanostructures for high-performance plasmonic photocatalysis under visible light. Nano Research, 2020, 13, 1354-1362.	10.4	15
56	Generation and Detection of Strain-Localized Excitons in WS ₂ Monolayer by Plasmonic Metal Nanocrystals. ACS Nano, 2022, 16, 10647-10656.	14.6	14
57	Optically controlled stochastic jumps of individual gold nanorod rotary motors. Physical Review B, 2018, 98, .	3.2	13
58	Morphology Engineering of Au/(PdAg alloy) Nanostructures for Enhanced Electrocatalytic Ethanol Oxidation. Particle and Particle Systems Characterization, 2018, 35, 1800258.	2.3	13
59	Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of <i>o</i> -Phenylenediamine. ACS Applied Materials & Interfaces, 2021, 13, 51855-51866.	8.0	12
60	Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions. ACS Omega, 2022, 7, 5844-5852.	3.5	11
61	Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. Applied Surface Science, 2009, 255, 6781-6785.	6.1	9
62	Nanoparticle‣oaded Cylindrical Micelles from Nanopore Extrusion of Block Copolymer Spherical Micelles. Macromolecular Rapid Communications, 2013, 34, 1850-1855.	3.9	9
63	Facet- and Gas-Dependent Reshaping of Au Nanoplates by Plasma Treatment. ACS Nano, 2021, 15, 9860-9870.	14.6	9
64	(Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. Nanoscale, 2020, 12, 20684-20692.	5.6	8
65	Asymmetric Light Scattering on Heterodimers Made of Au Nanorods Vertically Standing on Au Nanodisks. Advanced Optical Materials, 2021, 9, 2001595.	7.3	8
66	Control of light–valley interactions in 2D transition metal dichalcogenides with nanophotonic structures. Nanoscale, 2021, 13, 6357-6372.	5.6	7
67	Plasmonâ€Enhanced, Selfâ€Traced Nanomotors on the Surface of Silicon. Angewandte Chemie - International Edition, 2021, 60, 24958-24967.	13.8	7
68	Recent Progress in Opticalâ€Resonanceâ€Assisted Movement Control of Nanomotors. Advanced Intelligent Systems, 2020, 2, 1900160.	6.1	6
69	Electronic Paper: Plasmonic Metasurfaces with Conjugated Polymers for Flexible Electronic Paper in Color (Adv. Mater. 45/2016). Advanced Materials, 2016, 28, 10103-10103.	21.0	5
70	Controlling the emission frequency of graphene nanoribbon emitters based on spatially excited topological boundary states. Physical Chemistry Chemical Physics, 2020, 22, 8277-8283.	2.8	5
71	Electrophoretic Plasmonic Ink for Dynamic Color Display. Advanced Optical Materials, 2021, 9, 2100091.	7.3	5
72	A Dataâ€Miningâ€Assisted Design of Structural Colors on Diamond Metasurfaces. Advanced Photonics Research, 0, , 2100292.	3.6	4

#	Article	IF	CITATIONS
73	Metasurfaces: Continuous-Gradient Plasmonic Nanostructures Fabricated by Evaporation on a Partially Exposed Rotating Substrate (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4756-4756.	21.0	1
74	Functional Metal Nanocrystals for Biomedical Applications. , 2017, , 809-840.		1
75	Fabrication of continuous gradient plasmonic nanostructures. , 2016, , .		0
76	Plasmonâ€Enhanced, Selfâ€Traced Nanomotors on the Surface of Silicon. Angewandte Chemie, 0, , .	2.0	0
77	Functional Metal Nanocrystals for Biomedical Applications. , 2015, , 1-32.		0
78	Plasmon-coupling-induced photon scattering torque. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 671.	2.1	0
79	Synthesis of Colloidal Semiconductor Nanocrystals With Tunable Plasmonic Properties. , 2022, , 3-45.		0