
Qing-Dong Ou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8215665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonlinear microscopy of lead iodide nanosheets. Optics Express, 2022, 30, 4793.	3.4	Ο
2	<scp>Hotâ€electron emissionâ€driven</scp> energy recycling in transparent plasmonic electrode for organic solar cells. InformaÄnÃ-Materiály, 2022, 4, .	17.3	3
3	Phaseâ€Control of Singleâ€Crystalline Inorganic Halide Perovskites via Molecular Coordination Engineering. Advanced Functional Materials, 2022, 32, .	14.9	14
4	Tailoring Topological Transitions of Anisotropic Polaritons by Interface Engineering in Biaxial Crystals. Nano Letters, 2022, 22, 4260-4268.	9.1	40
5	Phaseâ€Control of Singleâ€Crystalline Inorganic Halide Perovskites via Molecular Coordination Engineering (Adv. Funct. Mater. 16/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
6	Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics, 2022, 4, 578-594.	26.6	51
7	Probing the dynamic structural changes of <scp>DNA</scp> using ultrafast laser pulse in grapheneâ€based optofluidic device. InformaÄnÃ-Materiály, 2021, 3, 316-326.	17.3	4
8	Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO ₃ and Polar Dielectric Interfaces. Nano Letters, 2021, 21, 3112-3119.	9.1	79
9	Balancing Charge Extraction for Efficient Back ontact Perovskite Solar Cells by Using an Embedded Mesoscopic Architecture. Advanced Energy Materials, 2021, 11, 2100053.	19.5	19
10	Efficient and Tunable Reflection of Phonon Polaritons at Builtâ€In Intercalation Interfaces. Advanced Materials, 2021, 33, e2008070.	21.0	16
11	Influence of direct deposition of dielectric materials on the optical response of monolayer WS2. Applied Physics Letters, 2021, 119, .	3.3	9
12	Flexible Polymer Photonic Films with Embedded Microvoids for High-Performance Passive Daytime Radiative Cooling. ACS Photonics, 2021, 8, 3301-3307.	6.6	30
13	Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells. Nano Energy, 2020, 67, 104223.	16.0	17
14	Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS Nano, 2020, 14, 1123-1132.	14.6	15
15	Perovskite Lenses: Flat Lenses Based on 2D Perovskite Nanosheets (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070228.	21.0	0
16	Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. Nano Letters, 2020, 20, 7811-7818.	9.1	27
17	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nature Communications, 2020, 11, 6086.	12.8	67
18	High performance broadband photo and soft X-ray detectors based on two dimensional	5.5	13

#	Article	IF	CITATIONS
19	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & Interfaces, 2020, 12, 26384-26390.	8.0	20
20	Chemical switching of low-loss phonon polaritons in $\hat{l}\pm$ -MoO3 by hydrogen intercalation. Nature Communications, 2020, 11, 2646.	12.8	54
21	Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.	27.8	413
22	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	47.7	78
23	Tailored Polarization Conversion and Lightâ€Energy Recycling for Highly Linearly Polarized White Organic Lightâ€Emitting Diodes. Laser and Photonics Reviews, 2020, 14, 1900341.	8.7	16
24	Flat Lenses Based on 2D Perovskite Nanosheets. Advanced Materials, 2020, 32, e2001388.	21.0	26
25	Anisotropic polaritons in van der Waals materials. InformaÄnÃ-Materiály, 2020, 2, 777-790.	17.3	36
26	Nonlinear microscopy of lead iodide nanosheets. , 2020, , .		0
27	Non-invasive Characterisation of Lead Iodide Nanosheets by Nonlinear Microscopy. , 2020, , .		0
28	Perovskite Xâ€Ray Detectors: Flexible, Printable Softâ€Xâ€Ray Detectors Based on Allâ€Inorganic Perovskite Quantum Dots (Adv. Mater. 30/2019). Advanced Materials, 2019, 31, 1970214.	21.0	18
29	Spatially Modulating the Fluorescence Color of Mixed-Halide Perovskite Nanoplatelets through Direct Femtosecond Laser Writing. ACS Applied Materials & Interfaces, 2019, 11, 26017-26023.	8.0	44
30	Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1, 268-287.	8.8	118
31	Flexible, Printable Softâ€Xâ€Ray Detectors Based on Allâ€Inorganic Perovskite Quantum Dots. Advanced Materials, 2019, 31, e1901644.	21.0	221
32	Capillary-bridge mediated assembly of aligned perovskite quantum dots for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5954-5961.	5.5	41
33	Superior Magnetoresistance Performance of Hybrid Graphene Foam/Metal Sulfide Nanocrystal Devices. ACS Applied Materials & Interfaces, 2019, 11, 19397-19403.	8.0	26
34	Multifunctional Silver Nanoparticle Interlayer-Modified ZnO as the Electron-Injection Layer for Efficient Inverted Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 9251-9258.	8.0	23
35	Nonlinear Microscopy of Lead Iodide Nanosheets. , 2019, , .		0
			_

Nonlinear Microscopy of Strain in Lead Iodide Nanosheets. , 2019, , .

0

#	Article	IF	CITATIONS
37	Tuning the florescence color of gradient bandgap perovskite nanoplate by direct laser writing. , 2019, , .		0
38	Strong Depletion in Hybrid Perovskite p–n Junctions Induced by Local Electronic Doping. Advanced Materials, 2018, 30, e1705792.	21.0	141
39	Band Structure Engineering in 2D Materials for Optoelectronic Applications. Advanced Materials Technologies, 2018, 3, 1800072.	5.8	78
40	Illuminationâ€Induced Halide Segregation in Gradient Bandgap Mixedâ€Halide Perovskite Nanoplatelets. Advanced Optical Materials, 2018, 6, 1801107.	7.3	30
41	Laser speckle formed disordered micro-meander structures for light extraction enhancement of flexible organic light-emitting diodes. Optics Express, 2018, 26, 20420.	3.4	4
42	Light beam shaping for collimated emission from white organic light-emitting diodes using customized lenticular microlens arrays structure. Applied Physics Letters, 2018, 112, .	3.3	20
43	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	10.0	168
44	Two novel blue phosphorescent host materials containing phenothiazine-5,5-dioxide structure derivatives. Beilstein Journal of Organic Chemistry, 2018, 14, 869-874.	2.2	9
45	Built-in random inverted micro-cone arrays: Nanosecond laser-induced surface texturing for optical outcoupling enhanced flexible white organic light-emitting diodes. Organic Electronics, 2018, 61, 134-141.	2.6	2
46	Role of Surface Recombination in Halide Perovskite Nanoplatelets. ACS Applied Materials & Interfaces, 2018, 10, 31586-31593.	8.0	41
47	Degradation of Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite and CH ₃ NH ₃ PbI ₃ /Graphene Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 24258-24265.	8.0	40
48	Recent Advances in Energetics of Metal Halide Perovskite Interfaces. Advanced Materials Interfaces, 2017, 4, 1600694.	3.7	51
49	Pixelated speckle image holography carrier fringes for efficient superimposed light harvesting in organic solar cells. Applied Physics Letters, 2017, 110, 253301.	3.3	1
50	Controlled Growth of Monocrystalline Organo‣ead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie - International Edition, 2017, 56, 12486-12491.	13.8	54
51	Controlled Growth of Monocrystalline Organoâ€Lead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie, 2017, 129, 12660-12665.	2.0	10
52	Tunable Broadband Wavefronts Shaping via Chaotic Speckle Image Holography Carrier Fringes. Advanced Optical Materials, 2017, 5, 1600810.	7.3	11
53	Speckle image holography modulated full-color organic light-emitting diodes with high efficiency and engineered emission profile. Organic Electronics, 2017, 42, 13-20.	2.6	2
54	The electro-optic performance and photovoltaic effect of organic devices based on cesium carbonate/Al/molybdenum trioxide intermediate connector. Organic Electronics, 2017, 51, 452-457.	2.6	5

#	Article	IF	CITATIONS
55	Titelbild: Controlled Growth of Monocrystalline Organo‣ead Halide Perovskite and Its Application in Photonic Devices (Angew. Chem. 41/2017). Angewandte Chemie, 2017, 129, 12547-12547.	2.0	0
56	The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices. Journal Physics D: Applied Physics, 2017, 50, 315101.	2.8	2
57	Aqueous Electrochemical Activity of the Mg Surface: The Role of Group 14 and 15 Microalloying Elements. Journal of the Electrochemical Society, 2017, 164, C918-C929.	2.9	18
58	Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss. Optics Express, 2017, 25, 15662.	3.4	18
59	Highly efficient quantum-dot light emitting diodes with sol-gel ZnO electron contact. Optical Materials Express, 2017, 7, 2161.	3.0	21
60	Interface energetics and engineering of organic heterostructures in organic photovoltaic cells. Science China Chemistry, 2016, 59, 422-435.	8.2	10
61	Synthesis, properties, and optical applications of low-dimensional perovskites. Chemical Communications, 2016, 52, 13637-13655.	4.1	252
62	Light Trapping: Light Manipulation in Organic Photovoltaics (Adv. Sci. 7/2016). Advanced Science, 2016, 3, .	11.2	1
63	Light Manipulation in Organic Photovoltaics. Advanced Science, 2016, 3, 1600123.	11.2	61
64	Light outcoupling enhanced flexible organic light-emitting diodes. Optics Express, 2016, 24, A674.	3.4	15
65	Tailoring Directive Gain for High-Contrast, Wide-Viewing-Angle Organic Light-Emitting Diodes Using Speckle Image Holograpy Metasurfaces. ACS Applied Materials & Interfaces, 2016, 8, 22402-22409.	8.0	14
66	Enhanced light harvesting in flexible polymer solar cells: synergistic simulation of a plasmonic meta-mirror and a transparent silver mesowire electrode. Journal of Materials Chemistry A, 2016, 4, 18952-18962.	10.3	37
67	Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal–Dielectric Composite Electrodes. ACS Nano, 2016, 10, 1625-1632.	14.6	101
68	Light Extraction: Efficiently Releasing the Trapped Energy Flow in White Organic Lightâ€Emitting Diodes with Multifunctional Nanofunnel Arrays (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2784-2784.	14.9	0
69	Efficiently Releasing the Trapped Energy Flow in White Organic Lightâ€Emitting Diodes with Multifunctional Nanofunnel Arrays. Advanced Functional Materials, 2015, 25, 2660-2668.	14.9	47
70	Polymer Solar Cells: Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1132-1132.	21.0	15
71	Outcoupling-Enhanced Flexible Organic Light-Emitting Diodes on Ameliorated Plastic Substrate with Built-in Indium–Tin-Oxide-Free Transparent Electrode. ACS Nano, 2015, 9, 7553-7562.	14.6	78
72	Photoemission spectroscopy study on interfacial energy level alignments in tandem organic light-emitting diodes. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 186-195.	1.7	9

#	Article	IF	CITATIONS
73	Singleâ€Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1035-1041.	21.0	1,004
74	Broadband Light Outâ€Coupling Enhancement of Flexible Organic Lightâ€Emitting Diodes Using Biomimetic Quasirandom Nanostructures. Advanced Optical Materials, 2015, 3, 203-210.	7.3	43
75	Simultaneously Enhancing Color Spatial Uniformity and Operational Stability with Deterministic Quasiâ€periodic Nanocone Arrays for Tandem Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 87-94.	7.3	27
76	Light-Emitting Diodes: Extremely Efficient White Organic Light-Emitting Diodes for General Lighting (Adv. Funct. Mater. 46/2014). Advanced Functional Materials, 2014, 24, 7392-7392.	14.9	1
77	Light manipulation for organic light-emitting diodes. Proceedings of SPIE, 2014, , .	0.8	1
78	Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors. Applied Physics Letters, 2014, 104, .	3.3	4
79	The doping effect of cesium-based compounds on carrier transport and operational stability in organic light-emitting diodes. Organic Electronics, 2014, 15, 1215-1221.	2.6	29
80	Realizing both improved luminance and stability in organic light-emitting devices based on a solution-processed inter-layer composed of MoOX and Au nanoparticles mixture. Organic Electronics, 2014, 15, 961-967.	2.6	31
81	Enhanced Light Harvesting in Organic Solar Cells Featuring a Biomimetic Active Layer and a Selfâ€Cleaning Antireflective Coating. Advanced Energy Materials, 2014, 4, 1301777.	19.5	104
82	The role of charge generation layers in the operational stability of tandem organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 1982.	5.5	34
83	Extremely Efficient White Organic Lightâ€Emitting Diodes for General Lighting. Advanced Functional Materials, 2014, 24, 7249-7256.	14.9	140
84	Light Extraction of Trapped Optical Modes in Polymer Light-Emitting Diodes with Nanoimprinted Double-Pattern Gratings. ACS Applied Materials & Interfaces, 2014, 6, 18139-18146.	8.0	38
85	Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures. Scientific Reports, 2014, 4, 4040.	3.3	119
86	Enhanced Performance of Semitransparent Inverted Organic Photovoltaic Devices via a High Reflector Structure. ACS Applied Materials & Interfaces, 2013, 5, 10185-10190.	8.0	32
87	The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes. Organic Electronics, 2013, 14, 839-844.	2.6	14
88	Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect. Journal of Materials Chemistry C, 2013, 1, 4319.	5.5	49