
Owain W Howell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8214060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130, 1089-1104.	7.6	1,142
2	Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor ${\rm \hat{l}}\pm 1$ subtype. Nature Neuroscience, 2000, 3, 587-592.	14.8	898
3	Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 2011, 134, 2755-2771.	7.6	685
4	Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the α5 Subunit of the GABA _A Receptor. Journal of Neuroscience, 2002, 22, 5572-5580.	3.6	591
5	A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology, 2010, 68, 477-493.	5.3	588
6	Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain, 2012, 135, 2925-2937.	7.6	310
7	Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of Neurology, 2018, 83, 739-755.	5.3	219
8	Loss of the Major GABA _A Receptor Subtype in the Brain Is Not Lethal in Mice. Journal of Neuroscience, 2001, 21, 3409-3418.	3.6	215
9	Activated Microglia Mediate Axoglial Disruption That Contributes to Axonal Injury in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1017-1033.	1.7	190
10	HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nature Neuroscience, 2010, 13, 180-189.	14.8	188
11	The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathologica, 2011, 122, 155-170.	7.7	188
12	Two Binding Sites for [³ H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1608-1618.	4.3	187
13	Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain, 2011, 134, 534-541.	7.6	186
14	Neuropeptide Y stimulates neuronal precursor proliferation in the postâ€natal and adult dentate gyrus. Journal of Neurochemistry, 2005, 93, 560-570.	3.9	174
15	Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain, 2006, 129, 3173-3185.	7.6	167
16	Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. Journal of Neurochemistry, 2003, 86, 646-659.	3.9	166
17	Autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain. Brain Research, 1999, 822, 265-270.	2.2	145
18	Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain, 2013, 136, 3596-3608.	7.6	125

OWAIN W HOWELL

#	Article	IF	CITATIONS
19	Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathologica Communications, 2014, 2, 53.	5.2	124
20	Complement is activated in progressive multiple sclerosis cortical grey matter lesions. Journal of Neuroinflammation, 2016, 13, 161.	7.2	101
21	Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiology of Disease, 2007, 26, 174-188.	4.4	96
22	Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Annals of Neurology, 2018, 84, 829-842.	5.3	96
23	Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathology and Applied Neurobiology, 2015, 41, 798-813.	3.2	82
24	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	4.1	76
25	Detection of Epstein–Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain, 2010, 133, e157-e157.	7.6	66
26	Expression and Function of Junctional Adhesion Molecule-C in Myelinated Peripheral Nerves. Science, 2007, 318, 1472-1475.	12.6	55
27	Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5749-5760.	7.1	53
28	GLRB is the third major gene of effect in hyperekplexia. Human Molecular Genetics, 2013, 22, 927-940.	2.9	50
29	Visualizing Cholesterol in the Brain by On-Tissue Derivatization and Quantitative Mass Spectrometry Imaging. Analytical Chemistry, 2021, 93, 4932-4943.	6.5	38
30	New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms. Journal of Biological Chemistry, 2013, 288, 33745-33759.	3.4	35
31	Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis. Brain Pathology, 2018, 28, 507-520.	4.1	31
32	Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier. PLoS Biology, 2020, 18, e3001008.	5.6	28
33	NPY augments the proliferative effect of FGF2 and increases the expression of FGFR1 on nestin positive postnatal hippocampal precursor cells, via the Y1 receptor. Journal of Neurochemistry, 2010, 113, 615-627.	3.9	20
34	Unacylated-Ghrelin Impairs Hippocampal Neurogenesis and Memory in Mice and Is Altered in Parkinson's Dementia in Humans. Cell Reports Medicine, 2020, 1, 100120.	6.5	15
35	"Ependymalâ€in―Gradient of Thalamic Damage in Progressive Multiple Sclerosis. Annals of Neurology, 2022, 92, 670-685.	5.3	15
36	Calorie restriction activates new adult born olfactoryâ€bulb neurones in a ghrelinâ€dependent manner but acylâ€ghrelin does not enhance subventricular zone neurogenesis. Journal of Neuroendocrinology, 2019, 31, e12755.	2.6	14

OWAIN W HOWELL

#	Article	IF	CITATIONS
37	Metabolic profiling in serum, cerebrospinal fluid, and brain of patients with cerebrotendinous xanthomatosis. Journal of Lipid Research, 2021, 62, 100078.	4.2	14
38	Changes in [3H]zolpidem and [3H]Ro 15-1788 binding in rat globus pallidus and substantia nigra pars reticulata following a nigrostriatal tract lesion. Brain Research, 2000, 862, 280-283.	2.2	13
39	NPY mediates basal and seizure-induced proliferation in the subcallosal zone. NeuroReport, 2007, 18, 1005-1008.	1.2	13
40	The association between neurodegeneration and local complement activation in the thalamus to progressive multiple sclerosis outcome. Brain Pathology, 2022, 32, e13054.	4.1	13
41	Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59. Multiple Sclerosis Journal, 2019, 25, 523-531.	3.0	9
42	CCN3 is dynamically regulated by treatment and disease state in multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 349.	7.2	8
43	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	4.1	8
44	Using biomarkers to predict clinical outcomes in multiple sclerosis. Practical Neurology, 2019, 19, 342-349.	1.1	5
45	Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology?. Neuroimmunology and Neuroinflammation, 2020, , .	1.4	3
46	Polymorphisms in Neuropsychiatric and Neuroinflammatory Disorders and the Role of Next Generation Sequencing in Early Diagnosis and Treatment. Advances in Protein Chemistry and Structural Biology, 2012, 89, 85-116.	2.3	2
47	The junctional adhesion molecule (JAM) is required for maintaining the integrity and function of myelinated peripheral nerves. FASEB Journal, 2007, 21, A65.	0.5	0