Christopher M Andolina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8214059/publications.pdf

Version: 2024-02-01

41 papers 1,540 citations

257450 24 h-index 302126 39 g-index

42 all docs 42 docs citations

times ranked

42

2674 citing authors

#	Article	IF	CITATIONS
1	Convergence acceleration in machine learning potentials for atomistic simulations. , 2022, 1, 61-69.		18
2	Hydrogen localization and cluster formation in $\hat{l}\pm -Zr$ from first-principles investigations. Computational Materials Science, 2022, 209, 111384.	3.0	3
3	Tuning electrical and interfacial thermal properties of bilayer MoS ₂ via electrochemical intercalation. Nanotechnology, 2021, 32, 265202.	2.6	3
4	Robust, Multi-Length-Scale, Machine Learning Potential for Ag–Au Bimetallic Alloys from Clusters to Bulk Materials. Journal of Physical Chemistry C, 2021, 125, 17438-17447.	3.1	31
5	Improved Al-Mg alloy surface segregation predictions with a machine learning atomistic potential. Physical Review Materials, 2021, 5, .	2.4	18
6	<i>In situ</i> environmental TEM observation of two-stage shrinking of Cu ₂ 0 islands on Cu(100) during methanol reduction. Physical Chemistry Chemical Physics, 2020, 22, 2738-2742.	2.8	14
7	Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy. Journal of Chemical Physics, 2020, 152, 154701.	3.0	35
8	Connecting Oxide Nucleation and Growth to Oxygen Diffusion Energetics on Stepped Cu(011) Surfaces: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 452-463.	3.1	19
9	Nearâ€Infrared Photoluminescence from Small Copper, Silver, and Gold Nanoparticles. ChemNanoMat, 2018, 4, 265-268.	2.8	12
10	Complete Oxidation of Methane on Co3O4/CeO2 Nanocomposite: A Synergic Effect. Catalysis Today, 2018, 311, 48-55.	4.4	52
11	Transition of surface phase of cobalt oxide during CO oxidation. Physical Chemistry Chemical Physics, 2018, 20, 6440-6449.	2.8	41
12	Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO. Applied Catalysis A: General, 2018, 556, 64-72.	4.3	34
13	In situ Observation of C112O Island Shrinking on Cu(100) Facet under Methanol Using Environmental Transmission Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 302-303.	0.4	1
14	In Situ Observations of Early Stage Oxidation of Ni-Cr and Ni-Cr-Mo Alloys. Corrosion, 2018, 74, 939-946.	1.1	39
15	In situ Insights into the Uncorking and Oxidative Decomposition Dynamics of Gold Nanoparticle Corked Carbon Nanotube Cups for Drug Delivery. Microscopy and Microanalysis, 2018, 24, 308-309.	0.4	O
16	Structural Change of a Cu/ZnO Catalyst under Methanol Observed by ETEM. Microscopy and Microanalysis, 2017, 23, 2100-2101.	0.4	2
17	Constructing a Predictive Model of Copper Oxidation from Experiment and Theory. Microscopy and Microanalysis, 2017, 23, 920-921.	0.4	3
18	Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III). Journal of the American Chemical Society, 2017, 139, 17767-17770.	13.7	15

#	Article	IF	Citations
19	Polycatechol Nanoparticle MRI Contrast Agents. Small, 2016, 12, 668-677.	10.0	64
20	Copper Deposition on Gold Nanoprism Substrates. Israel Journal of Chemistry, 2016, 56, 257-261.	2.3	4
21	Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano, 2016, 10, 10186-10194.	14.6	127
22	Effects of Ligand Geometry on the Photophysical Properties of Photoluminescent Eu(III) and Sm(III) 1-Hydroxypyridin-2-one Complexes in Aqueous Solution. Inorganic Chemistry, 2016, 55, 114-124.	4.0	26
23	Polymeric Gd-DOTA amphiphiles form spherical and fibril-shaped nanoparticle MRI contrast agents. Chemical Science, 2016, 7, 4230-4236.	7.4	26
24	Description and Role of Bimetallic Prenucleation Species in the Formation of Small Nanoparticle Alloys. Journal of the American Chemical Society, 2015, 137, 15852-15858.	13.7	40
25	Ligand-Mediated "Turn On,―High Quantum Yield Near-Infrared Emission in Small Gold Nanoparticles. Journal of the American Chemical Society, 2015, 137, 14423-14429.	13.7	85
26	Dynamics of Soft Nanomaterials Captured by Transmission Electron Microscopy in Liquid Water. Journal of the American Chemical Society, 2014, 136, 1162-1165.	13.7	96
27	Decoupling Mechanisms of Platinum Deposition on Colloidal Gold Nanoparticle Substrates. Journal of the American Chemical Society, 2014, 136, 7873-7876.	13.7	68
28	Goldâ€Cobalt Nanoparticle Alloys Exhibiting Tunable Compositions, Nearâ€Infrared Emission, and High <i>T</i> ₂ Relaxivity. Advanced Functional Materials, 2014, 24, 6532-6539.	14.9	40
29	Seedless Initiation as an Efficient, Sustainable Route to Anisotropic Gold Nanoparticles. Langmuir, 2013, 29, 4396-4403.	3.5	42
30	Photoluminescent Gold–Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission. Journal of the American Chemical Society, 2013, 135, 5266-5269.	13.7	92
31	Analysis of Lanthanide Complex Dendrimer Conjugates for Bimodal NIR and MRI Imaging. Macromolecules, 2012, 45, 8982-8990.	4.8	36
32	Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes. Journal of the American Chemical Society, 2012, 134, 15545-15549.	13.7	47
33	Conjugation to Biocompatible Dendrimers Increases Lanthanide <i>T</i> ₂ Relaxivity of Hydroxypyridinone Complexes for Magnetic Resonance Imaging. European Journal of Inorganic Chemistry, 2012, 2012, 2108-2114.	2.0	28
34	Spectroscopic Investigations of Lanthanide Ion Binding to Nucleic Acids. Metal Ions in Life Sciences, 2012, 10, 171-199.	2.8	10
35	Luminescence Resonance Energy Transfer in Heterodinuclear Ln ^{III} Complexes for Sensing Biologically Relevant Anions. European Journal of Inorganic Chemistry, 2011, 2011, 154-164.	2.0	45
36	Assembly of Nearâ€Infrared Luminescent Lanthanide Host(Host–Guest) Complexes With a Metallacrown Sandwich Motif. Angewandte Chemie - International Edition, 2011, 50, 9660-9664.	13.8	161

#	Article	IF	CITATIONS
37	Speciation of Eu(iii) hydroxo complexes in aqueous DMSO studied by direct excitation luminescence spectroscopy and their catalytic activity in phosphodiester cleavage. Dalton Transactions, 2010, 39, 864-873.	3.3	14
38	Solution Chemistry of Europium(III) Aqua Ion at Micromolar Concentrations as Probed by Direct Excitation Luminescence Spectroscopy. Helvetica Chimica Acta, 2009, 92, 2330-2348.	1.6	21
39	Spectroscopic System for Direct Lanthanide Photoluminescence Spectroscopy with Nanomolar Detection Limits. Applied Spectroscopy, 2009, 63, 483-493.	2.2	16
40	PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate. Bioconjugate Chemistry, 2009, 20, 1375-1382.	3.6	32
41	Tethered Dinuclear Europium(III) Macrocyclic Catalysts for the Cleavage of RNA. Journal of the American Chemical Society, 2008, 130, 14861-14871.	13.7	80