Rogier van der Velde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213829/publications.pdf

Version: 2024-02-01

236925 197818 2,472 59 25 49 citations g-index h-index papers 60 60 60 2516 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 2011, 15, 2303-2316.	4.9	304
2	Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 2018, 204, 931-941.	11.0	297
3	Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements. Journal of Hydrometeorology, 2017, 18, 2621-2645.	1.9	196
4	Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval. Remote Sensing of Environment, 2010, 114, 2417-2430.	11.0	149
5	Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images. Remote Sensing of Environment, 2012, 120, 175-187.	11.0	122
6	SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophysical Research Letters, 2016, 43, 8068-8075.	4.0	84
7	Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau. Remote Sensing, 2016, 8, 268.	4.0	70
8	Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change, 2012, 114, 769-781.	3.6	66
9	Soil Moisture Retrieval During a Corn Growth Cycle Using L-Band (1.6 GHz) Radar Observations. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 2365-2374.	6.3	62
10	Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site. Hydrology and Earth System Sciences, 2009, 13, 759-777.	4.9	59
11	Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. Journal of Hydrometeorology, 2014, 15, 921-937.	1.9	55
12	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676.	1.9	54
13	Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sensing of Environment, 2019, 226, 16-25.	11.0	54
14	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. Journal of Hydrometeorology, 2015, 16, 2677-2694.	1.9	49
15	Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 2018, 563, 382-394.	5.4	44
16	Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sensing of Environment, 2018, 209, 633-647.	11.0	40
17	Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset. Earth System Science Data, 2021, 13, 3075-3102.	9.9	38
18	Analysis of long-term terrestrial water storage variations in the Yangtze River basin. Hydrology and Earth System Sciences, 2013, 17, 1985-2000.	4.9	37

#	Article	IF	CITATIONS
19	Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1488-1504.	3.3	37
20	Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 2017, 18, 1749-1763.	1.9	37
21	L-Band Microwave Emission of Soil Freeze–Thaw Process in the Third Pole Environment. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 5324-5338.	6.3	36
22	Soil Moisture Mapping Using Combined Active/Passive Microwave Observations Over the East of the Netherlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4355-4372.	4.9	31
23	Dynamics in land-surface conditions on the Tibetan Plateau observed by Advanced Synthetic Aperture Radar (ASAR). Hydrological Sciences Journal, 2009, 54, 1079-1093.	2.6	29
24	Assimilation of Satellite-Observed Snow Albedo in a Land Surface Model. Journal of Hydrometeorology, 2012, 13, 1119-1130.	1.9	28
25	Anatomy of the 2018Âagricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices. Hydrology and Earth System Sciences, 2020, 24, 6021-6031.	4.9	28
26	Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3786-3799.	6.3	27
27	Impacts of Noah model physics on catchmentâ€scale runoff simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 807-832.	3.3	26
28	Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning's Roughness Coefficient in Hydraulic Modeling. Remote Sensing, 2015, 7, 836-864.	4.0	25
29	Impact of Soil Moisture Dynamics on ASAR Ïfo Signatures and Its Spatial Variability Observed over the Tibetan Plateau. Sensors, 2008, 8, 5479-5491.	3.8	24
30	Underâ€canopy turbulence and root water uptake of a <scp>T</scp> ibetan meadow ecosystem modeled by <scp>N</scp> oahâ€ <scp>MP</scp> . Water Resources Research, 2015, 51, 5735-5755.	4.2	23
31	The Raam regional soil moisture monitoring network in the Netherlands. Earth System Science Data, 2018, 10, 61-79.	9.9	23
32	Impacts of Radiometric Uncertainty and Weather-Related Surface Conditions on Soil Moisture Retrievals with Sentinel-1. Remote Sensing, 2019, 11, 2025.	4.0	22
33	Soil moisture mapping over the Chinese Loess Plateau using ENVISAT/ASAR data. Advances in Space Research, 2009, 43, 1111-1117.	2.6	21
34	A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities. Physics and Chemistry of the Earth, 2012, 50-52, 224-232.	2.9	19
35	Improving modeled snow albedo estimates during the spring melt season. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7311-7331.	3. 3	19
36	Effects of Roughness Length Parameterizations on Regional-Scale Land Surface Modeling of Alpine Grasslands in the Yangtze River Basin. Journal of Hydrometeorology, 2016, 17, 1069-1085.	1.9	17

#	Article	IF	CITATIONS
37	Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive observations and soil moisture retrieval. Remote Sensing of Environment, 2018, 205, 434-452.	11.0	17
38	Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. Journal of Hydrology X, 2020, 9, 100066.	1.6	15
39	Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4080-4093.	6.3	15
40	Ensemble uncertainty of inherent optical properties. Optics Express, 2011, 19, 16772.	3.4	14
41	Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1407-1411.	3.1	13
42	Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 108-118.	2.8	13
43	Technical Note: Calibration and validation of geophysical observation models. Biogeosciences, 2012, 9, 2195-2201.	3.3	12
44	New evidence for the links between the local water cycle and the underground wet sand layer of a mega-dune in the Badain Jaran Desert, China. Journal of Arid Land, 2014, 6, 371.	2.3	12
45	Monitoring agricultural field trafficability using Sentinel-1. Agricultural Water Management, 2019, 224, 105698.	5.6	12
46	State updating of root zone soil moisture estimates of an unsaturated zone metamodel for operational water resources management. Journal of Hydrology X, 2019, 4, 100040.	1.6	11
47	Decomposition of Uncertainties between Coarse MM5–Noah-Simulated and Fine ASAR-Retrieved Soil Moisture over Central Tibet. Journal of Hydrometeorology, 2012, 13, 1925-1938.	1.9	10
48	Aquarius L-band scatterometer and radiometer observations over a Tibetan Plateau site. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 165-177.	2.8	10
49	Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands. Hydrology and Earth System Sciences, 2021, 25, 473-495.	4.9	10
50	Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data. Sensors, 2008, 8, 1832-1845.	3.8	9
51	Semi-empirical approach for estimating broadband albedo of snow. Remote Sensing of Environment, 2011, 115, 2086-2095.	11.0	9
52	Land-atmospheric water and energy cycle of winter wheat, Loess Plateau, China. International Journal of Climatology, 2014, 34, 3044-3053.	3.5	8
53	L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle. Sensors, 2010, 10, 6980-7001.	3.8	7
54	Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sensing, 2021, 13, 3661.	4.0	7

#	Article	IF	CITATIONS
55	Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer. Earth System Science Data, 2021, 13, 2819-2856.	9.9	5
56	Active and Passive Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	5
57	Characterization of the Temporal and Spatial Variability of Soil Moisture through Multi-Temporal Analysis of ASAR Observations. , 2007, , .		3
58	Broadband Full Polarimetric Scatterometry for Monitoring Soil Moisture and Vegetation Properties Over a Tibetan Meadow. , 2018, , .		1
59	Using a Discrete Scattering Model to Constrain Water Cloud Model for Simulating Ground-Based Scatterometer Measurements and Retrieving Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, , 1-1.	4.9	1