Javier Naval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8213554/publications.pdf

Version: 2024-02-01

218677 276875 2,233 41 26 41 h-index citations g-index papers 42 42 42 3317 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Differential Secretion of Fas Ligand- or APO2 Ligand/TNF-Related Apoptosis-Inducing Ligand-Carrying Microvesicles During Activation-Induced Death of Human T Cells. Journal of Immunology, 2001, 167, 6736-6744.	0.8	240
2	Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. European Journal of Immunology, 1998, 28, 2714-2725.	2.9	179
3	Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2019, 7, 50.	3.7	139
4	Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. Journal of Cell Biology, 2004, 167, 457-468.	5.2	121
5	Role of Exosomes in the Regulation of T-cell Mediated Immune Responses and in Autoimmune Disease. Cells, 2019, 8, 154.	4.1	121
6	A Role of the Mitochondrial Apoptosis-Inducing Factor in Granulysin-Induced Apoptosis. Journal of Immunology, 2001, 167, 1222-1229.	0.8	103
7	Doxorubicinâ€induced apoptosis in human Tâ€cell leukemia is mediated by caspaseâ€3 activation in a Fasâ€independent way. FEBS Letters, 1997, 417, 360-364.	2.8	101
8	Liposomeâ€bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis and Rheumatism, 2010, 62, 2272-2282.	6.7	84
9	CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Letters, 1996, 390, 233-237.	2.8	78
10	Bortezomib resistance in a myeloma cell line is associated to PSM \hat{I}^25 overexpression and polyploidy. Leukemia Research, 2012, 36, 212-218.	0.8	75
11	Direct Interaction of Bax and Bak Proteins with Bcl-2 Homology Domain 3 (BH3)-only Proteins in Living Cells Revealed by Fluorescence Complementation. Journal of Biological Chemistry, 2013, 288, 4935-4946.	3.4	74
12	Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Letters, 2016, 382, 1-10.	7.2	74
13	Liposomes Decorated with Apo2L/TRAIL Overcome Chemoresistance of Human Hematologic Tumor Cells. Molecular Pharmaceutics, 2013, 10, 893-904.	4.6	70
14	Membrane expression of DR4, DR5 and caspase-8 levels, but not Mcl-1, determine sensitivity of human myeloma cells to Apo2L/TRAIL. Experimental Cell Research, 2007, 313, 2378-2388.	2.6	53
15	Cooperation between Apo2L/TRAIL and bortezomib in multiple myeloma apoptosis. Biochemical Pharmacology, 2009, 77, 804-812.	4.4	51
16	MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncolmmunology, 2015, 4, e985924.	4.6	48
17	Targeting the Apo2L/TRAIL system for the therapy of autoimmune diseases and cancer. Biochemical Pharmacology, 2012, 83, 1475-1483.	4.4	45
18	Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget, 2016, 7, 29287-29305.	1.8	45

#	Article	IF	Citations
19	Mechanism of apoptosis induced by IFN- \hat{l}_{\pm} in human myeloma cells: Role of Jak1 and Bim and potentiation by rapamycin. Cellular Signalling, 2007, 19, 844-854.	3.6	38
20	Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy. Cancers, 2019, 11, 444.	3.7	37
21	Farnesyltransferase Inhibitor BMS-214662 Induces Apoptosis in Myeloma Cells through PUMA Up-Regulation, Bax and Bak Activation, and Mcl-1 Elimination. Molecular Pharmacology, 2005, 67, 1991-1998.	2.3	34
22	Apo2L/TRAIL and immune regulation. Frontiers in Bioscience - Landmark, 2007, 12, 2074.	3.0	34
23	mtDNA-depleted U937 cells are sensitive to TNF and Fas-mediated cytototxicity. FEBS Letters, 1995, 376, 15-18.	2.8	32
24	Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochemical Pharmacology, 2014, 87, 410-423.	4.4	29
25	CD59 cross-linking induces secretion of APO2 ligand in overactivated human T cells. European Journal of Immunology, 2000, 30, 1078-1087.	2.9	28
26	Human CD8+ T cell blasts are more sensitive than CD4+ T cell blasts to regulation by APO2L/TRAIL. European Journal of Immunology, 2005, 35, 1812-1821.	2.9	27
27	Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochemical Pharmacology, 2010, 79, 1746-1758.	4.4	26
28	Role of oxidative damage and IL- $1\hat{l}^2$ -converting enzyme-like proteases in Fas-based cytotoxicity exerted by effector T cells. International Immunology, 1996, 8, 1173-1183.	4.0	24
29	Future prospects for mitosis-targeted antitumor therapies. Biochemical Pharmacology, 2021, 190, 114655.	4.4	24
30	Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncolmmunology, 2021, 10, 1853314.	4.6	24
31	Expanded and activated allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia (B-CLL) cells with sporadic cases of resistance. Scientific Reports, 2020, 10, 19398.	3.3	23
32	Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspaseâ€dependent NADPH oxidase activation. Immunology and Cell Biology, 2010, 88, 545-554.	2.3	21
33	Two death pathways induced by sorafenib in myeloma cells: Puma-mediated apoptosis and necroptosis. Clinical and Translational Oncology, 2015, 17, 121-132.	2.4	21
34	Apo2L/TRAIL is an indirect mediator of apoptosis induced by interferon- \hat{l}_{\pm} in human myeloma cells. FEBS Letters, 2005, 579, 6217-6222.	2.8	20
35	Bim is the key mediator of glucocorticoid-induced apoptosis and of its potentiation by rapamycin in human myeloma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 311-322.	4.1	19
36	Cell cycle regulation by FasL and Apo2L/TRAIL in human T-cell blasts. Implications for autoimmune lymphoproliferative syndromes. Journal of Leukocyte Biology, 2008, 84, 488-498.	3.3	17

#	Article	IF	CITATIONS
37	Novel Forms of Immunomodulation for Cancer Therapy. Trends in Cancer, 2020, 6, 518-532.	7.4	17
38	In vivopotential of recombinant granulysin against human tumors. Oncolmmunology, 2015, 4, e1036213.	4.6	15
39	IFNÎ \pm signaling through PKC-Î, is essential for antitumor NK cell function. Oncolmmunology, 2014, 3, e948705.	4.6	10
40	Harnessing the Potential of NK Cell-Based Immunotherapies against Multiple Myeloma. Cells, 2022, 11, 392.	4.1	7
41	Response: Commentary: Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2019, 7, 306.	3.7	4