
AnÃ-bal Ollero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8212784/publications.pdf Version: 2024-02-01

ANÃRAL OLIERO

#	Article	IF	CITATIONS
1	Aerial Manipulation: A Literature Review. IEEE Robotics and Automation Letters, 2018, 3, 1957-1964.	5.1	328
2	Experimental Results in Multi-UAV Coordination for Disaster Management and Civil Security Applications. Journal of Intelligent and Robotic Systems: Theory and Applications, 2011, 61, 563-585.	3.4	321
3	An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 65, 533-548.	3.4	304
4	Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics, 2011, 28, 914-931.	6.0	303
5	A cooperative perception system for multiple UAVs: Application to automatic detection of forest fires. Journal of Field Robotics, 2006, 23, 165-184.	6.0	239
6	Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. , 2007, , 221-230.		171
7	The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance. IEEE Robotics and Automation Magazine, 2018, 25, 12-23.	2.0	157
8	Past, Present, and Future of Aerial Robotic Manipulators. IEEE Transactions on Robotics, 2022, 38, 626-645.	10.3	145
9	Control and perception techniques for aerial robotics. Annual Reviews in Control, 2004, 28, 167-178.	7.9	124
10	Characterization of the Aerodynamic Ground Effect and Its Influence in Multirotor Control. International Journal of Aerospace Engineering, 2017, 2017, 1-17.	0.9	93
11	Novel Aerial Manipulator for Accurate and Robust Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors, 2019, 19, 1305.	3.8	91
12	Cooperative Large Area Surveillance with a Team of Aerial Mobile Robots for Long Endurance Missions. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 70, 329-345.	3.4	86
13	A Ground Control Station for a Multi-UAV Surveillance System. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 69, 119-130.	3.4	85
14	Decentralized multi-robot cooperation with auctioned POMDPs. International Journal of Robotics Research, 2013, 32, 650-671.	8.5	83
15	Closed-Loop Behavior of an Autonomous Helicopter Equipped with a Robotic Arm for Aerial Manipulation Tasks. International Journal of Advanced Robotic Systems, 2013, 10, 145.	2.1	78
16	A distributed architecture for a robotic platform with aerial sensor transportation and selfâ€deployment capabilities. Journal of Field Robotics, 2011, 28, 303-328.	6.0	77
17	Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems. Sensors, 2011, 11, 6328-6353.	3.8	76
18	Distributed Service-Based Cooperation in Aerial/Ground Robot Teams Applied to Fire Detection and Extinguishing Missions. Advanced Robotics, 2010, 24, 1-23.	1.8	71

#	Article	IF	CITATIONS
19	Design of a lightweight dual arm system for aerial manipulation. Mechatronics, 2018, 50, 30-44.	3.3	67
20	Physical-Virtual Impedance Control in Ultralightweight and Compliant Dual-Arm Aerial Manipulators. IEEE Robotics and Automation Letters, 2018, 3, 2553-2560.	5.1	67
21	Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors. Sensors, 2009, 9, 7566-7579.	3.8	63
22	Behavioral control of unmanned aerial vehicle manipulator systems. Autonomous Robots, 2017, 41, 1203-1220.	4.8	59
23	Cooperative Decision-Making Under Uncertainties for Multi-Target Surveillance with Multiples UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 371-386.	3.4	58
24	Robotic System for Inspection by Contact of Bridge Beams Using UAVs. Sensors, 2019, 19, 305.	3.8	57
25	Sensor Installation and Retrieval Operations Using an Unmanned Aerial Manipulator. IEEE Robotics and Automation Letters, 2019, 4, 2793-2800.	5.1	54
26	Contact-Based Bridge Inspection Multirotors: Design, Modeling, and Control Considering the Ceiling Effect. IEEE Robotics and Automation Letters, 2019, 4, 3561-3568.	5.1	53
27	Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation. , 2017, , .		51
28	An architecture for robust UAV navigation in GPSâ€denied areas. Journal of Field Robotics, 2018, 35, 121-145.	6.0	49
29	Coastal Areas Division and Coverage with Multiple UAVs for Remote Sensing. Sensors, 2017, 17, 808.	3.8	48
30	An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors. Sensors, 2011, 11, 11516-11543.	3.8	46
31	Distributed Approach for Coverage and Patrolling Missions with a Team of Heterogeneous Aerial Robots under Communication Constraints. International Journal of Advanced Robotic Systems, 2013, 10, 28.	2.1	43
32	Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments. Sensors, 2017, 17, 103.	3.8	43
33	Compliant Bimanual Aerial Manipulation: Standard and Long Reach Configurations. IEEE Access, 2020, 8, 88844-88865.	4.2	43
34	Design of the High-Payload Flapping Wing Robot E-Flap. IEEE Robotics and Automation Letters, 2021, 6, 3097-3104.	5.1	43
35	Virtual Sensor for Failure Detection, Identification and Recovery in the Transition Phase of a Morphing Aircraft. Sensors, 2010, 10, 2188-2201.	3.8	42
36	Design of an Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation. IEEE Access, 2018, 6, 29173-29189.	4.2	42

#	Article	IF	CITATIONS
37	One-to-One Coordination Algorithm for Decentralized Area Partition in Surveillance Missions with a Team of Aerial Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 74, 269-285.	3.4	41
38	Collision-Free 4D Trajectory Planning in Unmanned Aerial Vehicles for Assembly and Structure Construction. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 73, 783-795.	3.4	41
39	Conflict Detection and Resolution Method for Cooperating Unmanned Aerial Vehicles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 65, 495-505.	3.4	40
40	Lightweight compliant arm for aerial manipulation. , 2015, , .		40
41	Unmanned Aerial Vehicle Localization Based on Monocular Vision and Online Mosaicking. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 55, 323-343.	3.4	39
42	Stability of autonomous vehicle path tracking with pure delays in the control loop. Advanced Robotics, 2007, 21, 23-50.	1.8	38
43	Data Retrieving From Heterogeneous Wireless Sensor Network Nodes Using UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2010, 60, 133-151.	3.4	38
44	Lightweight compliant arm with compliant finger for aerial manipulation and inspection. , 2016, , .		38
45	Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas. Sensors, 2010, 10, 2274-2314.	3.8	37
46	Testbeds for ubiquitous robotics: A survey. Robotics and Autonomous Systems, 2013, 61, 1487-1501.	5.1	35
47	Area Partition for Coastal Regions with Multiple UAS. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 88, 751-766.	3.4	35
48	Benchmarks for Aerial Manipulation. IEEE Robotics and Automation Letters, 2020, 5, 2650-2657.	5.1	32
49	A mobile robot iconic position estimator using a radial laser scanner. Journal of Intelligent and Robotic Systems: Theory and Applications, 1995, 13, 161-179.	3.4	31
50	Lightweight and Compliant Long Reach Aerial Manipulator for Inspection Operations. , 2018, , .		31
51	Advances in Modeling and Control of Tethered Unmanned Helicopters to Enhance Hovering Performance. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 73, 3-18.	3.4	30
52	Fully-Actuated Aerial Manipulator for Infrastructure Contact Inspection: Design, Modeling, Localization, and Control. Sensors, 2020, 20, 4708.	3.8	29
53	Aerial Manipulator With Rolling Base for Inspection of Pipe Arrays. IEEE Access, 2020, 8, 162516-162532.	4.2	27
54	A decentralized algorithm for area surveillance missions using a team of aerial robots with different		26

sensing capabilities., 2014,,.

#	Article	IF	CITATIONS
55	Area decomposition, partition and coverage with multiple remotely piloted aircraft systems operating in coastal regions. , 2016, , .		26
56	Range-only SLAM for robot-sensor network cooperation. Autonomous Robots, 2018, 42, 649-663.	4.8	26
57	Optimal trajectory planning for cinematography with multiple Unmanned Aerial Vehicles. Robotics and Autonomous Systems, 2021, 140, 103778.	5.1	26
58	On the Use of Tethered Configurations for Augmenting Hovering Stability in Small-size Autonomous Helicopters. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 70, 509-525.	3.4	25
59	First Experimental Results on Motion Planning for Transportation in Aerial Long-Reach Manipulators with Two Arms. , 2018, , .		25
60	Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 2018, 18, 4101.	3.8	25
61	Introducing autonomous aerial robots in industrial manufacturing. Journal of Manufacturing Systems, 2021, 60, 312-324.	13.9	25
62	Spiral-like coverage path planning for multiple heterogeneous UAS operating in coastal regions. , 2017, , .		24
63	Procedures for the Integration of Drones into the Airspace Based on U-Space Services. Aerospace, 2020, 7, 128.	2.2	24
64	Title is missing!. Journal of Intelligent and Robotic Systems: Theory and Applications, 2000, 28, 85-123.	3.4	23
65	Unmanned Aerial Systems Physically Interacting with the Environment: Load Transportation, Deployment, and Aerial Manipulation. , 2015, , 2755-2785.		23
66	Design, modeling, and control of an aerial manipulator for placement and retrieval of sensors in the environment. Journal of Field Robotics, 2020, 37, 1224-1245.	6.0	23
67	Safe Local Aerial Manipulation for the Installation of Devices on Power Lines: AERIAL-CORE First Year Results and Designs. Applied Sciences (Switzerland), 2021, 11, 6220.	2.5	23
68	Autonomous Aerial Filming With Distributed Lighting by a Team of Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters, 2021, 6, 7580-7587.	5.1	23
69	A WSN-Based Tool for Urban and Industrial Fire-Fighting. Sensors, 2012, 12, 15009-15035.	3.8	22
70	Model-Based Design, Development and Validation for UAS Critical Software. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 65, 103-114.	3.4	22
71	A Novel Landing System to Increase Payload Capacity and Operational Availability of High Altitude Long Endurance UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 88, 597-618.	3.4	22
72	Laboratory fire spread analysis using visual and infrared images. International Journal of Wildland Fire, 2006, 15, 179.	2.4	21

#	Article	IF	CITATIONS
73	Autonomous Execution of Cinematographic Shots With Multiple Drones. IEEE Access, 2020, 8, 201300-201316.	4.2	21
74	Accurate control of Aerial Manipulators outdoors. A reliable and self-coordinated nonlinear approach. Aerospace Science and Technology, 2020, 99, 105731.	4.8	21
75	Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance. Sensors, 2021, 21, 8488.	3.8	21
76	Undelayed 3D RO-SLAM based on Gaussian-mixture and reduced spherical parametrization. , 2013, , .		20
77	Landing of a fixed-wing UAV on a mobile ground vehicle. , 2016, , .		20
78	A 3D-Printable Docking System for Aerial Robots: Controlling Aerial Robotic Manipulators in Outdoor Industrial Applications. IEEE Robotics and Automation Magazine, 2019, 26, 44-53.	2.0	20
79	Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low Reynolds numbers. Aerospace Science and Technology, 2022, 126, 107625.	4.8	20
80	Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors. Sensors, 2016, 16, 700.	3.8	17
81	Robust Range-Only SLAM for Unmanned Aerial Systems. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 297-310.	3.4	16
82	Multi-sensor three-dimensional Monte Carlo localization for long-term aerial robot navigation. International Journal of Advanced Robotic Systems, 2017, 14, 172988141773275.	2.1	16
83	A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs. Sensors, 2019, 19, 886.	3.8	16
84	Experimental Evaluation of Aerial Manipulation Robot in Contact With 15 kV Power Line: Shielded and Long Reach Configurations. IEEE Access, 2021, 9, 94573-94585.	4.2	16
85	A Survey on Methods for Elaborated Modeling of the Mechanics of a Small-Size Helicopter. Analysis and Comparison. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 72, 219-238.	3.4	15
86	Ten Years of Cooperation Between Mobile Robots and Sensor Networks. International Journal of Advanced Robotic Systems, 2015, 12, 70.	2.1	15
87	Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation. Sensors, 2017, 17, 8.	3.8	15
88	Unmanned aerial vehicle abstraction layer: An abstraction layer to operate unmanned aerial vehicles. International Journal of Advanced Robotic Systems, 2020, 17, 172988142092501.	2.1	15
89	Cartesian Aerial Manipulator with Compliant Arm. Applied Sciences (Switzerland), 2021, 11, 1001.	2.5	15
90	Perception-Aware Perching on Powerlines With Multirotors. IEEE Robotics and Automation Letters, 2022, 7, 3077-3084.	5.1	15

#	Article	IF	CITATIONS
91	Distributed motion misbehavior detection in teams of heterogeneous aerial robots. Robotics and Autonomous Systems, 2015, 74, 30-39.	5.1	14
92	Energy-Based Cooperative Control for Landing Fixed-Wing UAVs on Mobile Platforms Under Communication Delays. IEEE Robotics and Automation Letters, 2020, 5, 5081-5088.	5.1	14
93	Localization and mapping for aerial manipulation based on range-only measurements and visual markers. , 2014, , .		13
94	Collision Avoidance for Multiple UAVs Using Rolling-Horizon Policy. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 387-396.	3.4	13
95	Risk Assessment based on SORA Methodology for a UAS Media Production Application. , 2019, , .		13
96	A Bio-Inspired Manipulator with Claw Prototype for Winged Aerial Robots: Benchmark for Design and Control. Applied Sciences (Switzerland), 2020, 10, 6516.	2.5	13
97	Unmanned Aerial Traffic Management System Architecture for U-Space In-Flight Services. Applied Sciences (Switzerland), 2021, 11, 3995.	2.5	13
98	Efficient integration of RSSI for tracking using Wireless Camera Networks. Information Fusion, 2017, 36, 296-312.	19.1	12
99	Optimal Trajectory Planning for Autonomous Drone Cinematography. , 2019, , .		12
100	Aerial Physical Interaction in Grabbing Conditions with Lightweight and Compliant Dual Arms. Applied Sciences (Switzerland), 2020, 10, 8927.	2.5	12
101	The GRIFFIN Perception Dataset: Bridging the Gap Between Flapping-Wing Flight and Robotic Perception. IEEE Robotics and Automation Letters, 2021, 6, 1066-1073.	5.1	12
102	An Adaptive Scheme for Robot Localization and Mapping with Dynamically Configurable Inter-Beacon Range Measurements. Sensors, 2014, 14, 7684-7710.	3.8	11
103	A Distributed Algorithm for Area Partitioning in Grid-Shape and Vector-Shape Configurations with Multiple Aerial Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 543-557.	3.4	11
104	Bluetooth network for micro-uavs for communication network and embedded range only localization. , 2017, , .		11
105	An efficient approach for undelayed range-only SLAM based on Gaussian mixtures expectation. Robotics and Autonomous Systems, 2018, 104, 40-55.	5.1	11
106	Winged Aerial Manipulation Robot with Dual Arm and Tail. Applied Sciences (Switzerland), 2020, 10, 4783.	2.5	11
107	Director Tools for Autonomous Media Production with a Team of Drones. Applied Sciences (Switzerland), 2020, 10, 1494.	2.5	11
108	Control Aware of Limitations of Manipulators With Claw for Aerial Robots Imitating Bird's Skeleton. IEEE Robotics and Automation Letters, 2021, 6, 6426-6433.	5.1	11

#	Article	IF	CITATIONS
109	Quaternion-based state-dependent differential Riccati equation for quadrotor drones: Regulation control problem in aerobatic flight. Robotica, 2022, 40, 3120-3135.	1.9	11
110	First experimental results on enhancing hovering performance of unmanned helicopters by using a tethered setup. Robotics and Autonomous Systems, 2016, 79, 147-155.	5.1	10
111	A General Framework for Synchronizing a Team of Robots Under Communication Constraints. IEEE Transactions on Robotics, 2017, 33, 748-755.	10.3	10
112	On-Line RSSI-Range Model Learning for Target Localization and Tracking. Journal of Sensor and Actuator Networks, 2017, 6, 15.	3.9	10
113	Soft-Tentacle Gripper for Pipe Crawling to Inspect Industrial Facilities Using UAVs. Sensors, 2021, 21, 4142.	3.8	10
114	Free as a Bird: Event-Based Dynamic Sense-and-Avoid for Ornithopter Robot Flight. IEEE Robotics and Automation Letters, 2022, 7, 5413-5420.	5.1	10
115	A PD-Type State-Dependent Riccati Equation With Iterative Learning Augmentation for Mechanical Systems. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1499-1511.	13.1	10
116	Data fusion in ubiquitous networked robot systems for urban services. Annales Des Telecommunications/Annals of Telecommunications, 2012, 67, 355-375.	2.5	9
117	Modeling and Simulation of the HADA Reconfigurable UAV. Journal of Intelligent and Robotic Systems: Theory and Applications, 2012, 65, 115-122.	3.4	9
118	A novel landing system to increase payload capacity and operational availability of high altitude long endurance UAV. , 2016, , .		9
119	Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation. Sensors, 2017, 17, 903.	3.8	9
120	Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms. International Journal of Advanced Robotic Systems, 2018, 15, 172988141877052.	2.1	9
121	An Efficient Distributed Area Division Method for Cooperative Monitoring Applications with Multiple UAVs. Sensors, 2020, 20, 3448.	3.8	9
122	Geometric control using the state-dependent Riccati equation: application to aerial-acrobatic maneuvers. International Journal of Control, 2022, 95, 1875-1887.	1.9	9
123	Bio-Inspired Morphing Tail for Flapping-Wings Aerial Robots Using Macro Fiber Composites. Applied Sciences (Switzerland), 2021, 11, 2930.	2.5	9
124	A Multi-Layer Software Architecture for Aerial Cognitive Multi-Robot Systems in Power Line Inspection Tasks. , 2021, , .		9
125	Installation of Clip-Type Bird Flight Diverters on High-Voltage Power Lines with Aerial Manipulation Robot: Prototype and Testbed Experimentation. Applied Sciences (Switzerland), 2021, 11, 7427.	2.5	9
126	Mobile robot path planning for fineâ€grained and smooth path spcification. Journal of Field Robotics, 1995, 12, 491-503.	0.7	8

#	ARTICLE	IF	CITATIONS
127	Combining Unmanned Aerial Systems and Sensor Networks for Earth Observation. Remote Sensing, 2017, 9, 336.	4.0	8
128	Autonomous Planning for Multiple Aerial Cinematographers. , 2020, , .		8
129	Introduction to the Special Issue on Aerial Manipulation. IEEE Robotics and Automation Letters, 2018, 3, 2734-2737.	5.1	7
130	A 4D grid based approach for efficient conflict detection in large-scale multi-UAV scenarios. , 2019, , .		7
131	A framework for set-based kinematic control of multi-robot systems. Control Engineering Practice, 2021, 106, 104669.	5.5	7
132	Experimental Evaluation of a Team of Multiple Unmanned Aerial Vehicles for Cooperative Construction. IEEE Access, 2021, 9, 6817-6835.	4.2	7
133	Localization System for Lightweight Unmanned Aerial Vehicles in Inspection Tasks. Sensors, 2021, 21, 5937.	3.8	7
134	Experimental Evaluation of Aerial Manipulation Robot for the Installation of Clip Type Bird Diverters: Outdoor Flight Tests. , 2021, , .		7
135	Comparison of motion planning techniques for a multi-rotor UAS equipped with a multi-joint manipulator Arm. , 2015, , .		6
136	Alâ€Robotics team: A cooperative multiâ€unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge. Journal of Field Robotics, 2019, 36, 104-124.	6.0	6
137	Adaptive Integral Inverse Kinematics Control for Lightweight Compliant Manipulators. IEEE Robotics and Automation Letters, 2020, 5, 3468-3474.	5.1	6
138	Aerial Robotic Solution for Detailed Inspection of Viaducts. Applied Sciences (Switzerland), 2021, 11, 8404.	2.5	6
139	Auto-Tuned Event-Based Perception Scheme for Intrusion Monitoring With UAS. IEEE Access, 2021, 9, 44840-44854.	4.2	6
140	A UTM simulator based on ROS and Gazebo. , 2019, , .		5
141	Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines. , 2021, , .		5
142	A 79.7g Manipulator Prototype for E-Flap Robot: A Plucking-Leaf Application. IEEE Access, 2022, 10, 65300-65308.	4.2	5
143	Architecture for the Automatic Generation of Plans for Multiple UAS from a Generic Mission Description. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 493-509.	3.4	4

144 Smooth trajectory generation for wind field exploitation with a small UAS. , 2017, , .

#	Article	IF	CITATIONS
145	Securing UAV communications using ROS with custom ECIES-based method. , 2019, , .		4
146	Small-Scale Compliant Dual Arm with Tail for Winged Aerial Robots. , 2019, , .		4
147	Audio-Based Aircraft Detection System for Safe RPAS BVLOS Operations. Electronics (Switzerland), 2020, 9, 2076.	3.1	4
148	Gravity compensation and optimal control of actuated multibody system dynamics. IET Control Theory and Applications, 2022, 16, 79-93.	2.1	4
149	Release of Sterile Mosquitoes with Drones in Urban and Rural Environments under the European Drone Regulation. Applied Sciences (Switzerland), 2022, 12, 1250.	2.5	4
150	Robust range-only SLAM for aerial vehicles. , 2014, , .		3
151	A framework to handle threats for UAS operating in the U-space. , 2019, , .		3
152	Integration of a 4D-trajectory Follower to Improve Multi-UAV Conflict Management Within the U-Space Context. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 102, 1.	3.4	3
153	Soft-Landing of Multi-Rotor Drones using a Robust Nonlinear Control and Wind Modeling. , 2021, , .		3
154	GRVC-CATEC: Aerial Robot Co-worker in Plant Servicing (ARCOW). Springer Tracts in Advanced Robotics, 2020, , 211-242.	0.4	3
155	Design and Manufacture of the Wing Folding Mechanism for a Bioinspired Ornithopter. , 2021, , .		2
156	TCP Muscle Tensors: Theoretical Analysis and Potential Applications inÂAerial Robotic Systems. Advances in Intelligent Systems and Computing, 2020, , 40-51.	0.6	2
157	Aerodynamic Effects in Multirotors Flying Close to Obstacles: Modelling and Mapping. Advances in Intelligent Systems and Computing, 2020, , 63-74.	0.6	2
158	Kinodynamic planning for an energy-efficient autonomous ornithopter. Computers and Industrial Engineering, 2021, 163, 107814.	6.3	2
159	A Lightweight Beak-Like Sensing System for Grasping Tasks of Flapping Aerial Robots. IEEE Robotics and Automation Letters, 2022, 7, 2313-2320.	5.1	2
160	Aerial Robotics and Unmanned Aerial Vehicles [TC Spotlight]. IEEE Robotics and Automation Magazine, 2018, 25, 96-97.	2.0	1
161	Effects of Unsteady Aerodynamics on Gliding Stability of a Bio-Inspired UAV. , 2020, , .		1
162	High-Level Modular Autopilot Solution for Fast Prototyping of Unmanned Aerial Systems. IEEE Access, 2020, 8, 223827-223836.	4.2	1

#	Article	IF	CITATIONS
163	ROSS-LAN: RObotic Sensing Simulation Scheme for Bioinspired Robotic Bird LANding. Advances in Intelligent Systems and Computing, 2020, , 48-59.	0.6	1
164	Online Detection and Tracking of Pipes During UAV Flight in Industrial Environments. Advances in Intelligent Systems and Computing, 2020, , 28-39.	0.6	1
165	Autonomous fire-fighting with heterogeneous team of unmanned aerial vehicles. , 2021, 1, 158-185.		1
166	Threat Management Methodology for Unmanned Aerial Systems Operating in the U-Space. IEEE Access, 2022, 10, 70476-70490.	4.2	1
167	Autonomous Localization of Missing Items withÂAerial Robots in an Aircraft Factory. Advances in Intelligent Systems and Computing, 2018, , 179-189.	0.6	0
168	An Aerodynamic Extension for Motion Planning with Dynamics Awareness in Aerial Long-Reach Manipulators. International Journal of Aerospace Engineering, 2020, 2020, 1-17.	0.9	0
169	Cartesian manipulator for infrastructure inspection and maintenance. , 2021, , .		0
170	Modelling and Control of Robotic Helicopters. , 2020, , 1-8.		0
171	Range-Only Simultaneous Localization and Mapping for Aerial Robots. , 2020, , 1-9.		0
172	Winged Aerial Robot: Modular Design Approach. , 2021, , .		0