List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of loading conditions for railway track structures due to train and track vertical interaction. Structural Control and Health Monitoring, 2008, 15, 207-234.	4.0	221
2	Grand Challenges in Transportation and Transit Systems. Frontiers in Built Environment, 2016, 2, .	2.3	165
3	Digital twin aided sustainability-based lifecycle management for railway turnout systems. Journal of Cleaner Production, 2019, 228, 1537-1551.	9.3	146
4	A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings. Sustainability, 2019, 11, 159.	3.2	131
5	Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters. Journal of Sound and Vibration, 2006, 298, 453-461.	3.9	122
6	Composite railway sleepers – Recent developments, challenges and future prospects. Composite Structures, 2015, 134, 158-168.	5.8	116
7	Nonlinear free vibrations of marine risers/pipes transporting fluid. Ocean Engineering, 2005, 32, 417-440.	4.3	115
8	Progressive failure of prestressed concrete sleepers under multiple high-intensity impact loads. Engineering Structures, 2009, 31, 2460-2473.	5.3	101
9	Digital Twin for Sustainability Evaluation of Railway Station Buildings. Frontiers in Built Environment, 2018, 4, .	2.3	100
10	Field trials for dynamic characteristics of railway track and its components using impact excitation technique. NDT and E International, 2007, 40, 510-519.	3.7	93
11	State-of-the-Art Review of Railway Track Resilience Monitoring. Infrastructures, 2018, 3, 3.	2.8	85
12	Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads. Journal of Structural Engineering, 2010, 136, 749-754.	3.4	78
13	Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tyre Crumb Rubber. Materials, 2018, 11, 1169.	2.9	78
14	Impact capacity of railway prestressed concrete sleepers. Engineering Failure Analysis, 2009, 16, 1520-1532.	4.0	76
15	Monitoring structural deterioration of railway turnout systems via dynamic wheel/rail interaction. Case Studies in Nondestructive Testing and Evaluation, 2014, 1, 19-24.	1.7	71
16	Experimental load rating of aged railway concrete sleepers. Engineering Structures, 2014, 76, 147-162.	5.3	68
17	Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability, 2021, 13, 2051.	3.2	66
18	Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability, 2020, 12, 7873	3.2	64

#	Article	IF	CITATIONS
19	Sustainability-Based Lifecycle Management for Bridge Infrastructure Using 6D BIM. Sustainability, 2020, 12, 2436.	3.2	64
20	EFFECT OF IMPROPER BALLAST PACKING/TAMPING ON DYNAMIC BEHAVIORS OF ON-TRACK RAILWAY CONCRETE SLEEPER. International Journal of Structural Stability and Dynamics, 2007, 07, 167-177.	2.4	63
21	Investigation of free vibrations of voided concrete sleepers in railway track system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221, 495-507.	2.0	58
22	Experimental Investigation on Dynamic Railway Sleeper/Ballast Interaction. Experimental Mechanics, 2006, 46, 57-66.	2.0	57
23	Bayesian Network-based probability analysis of train derailments caused by various extreme weather patterns on railway turnouts. Safety Science, 2018, 110, 20-30.	4.9	54
24	Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions. Construction and Building Materials, 2020, 260, 119936.	7.2	54
25	An Alternative Rail Pad Tester for Measuring Dynamic Properties of Rail Pads Under Large Preloads. Experimental Mechanics, 2008, 48, 55-64.	2.0	53
26	Experiments into impact behaviour of railway prestressed concrete sleepers. Engineering Failure Analysis, 2011, 18, 2305-2315.	4.0	50
27	Reliability-based conversion of a structural design code for railway prestressed concrete sleepers. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226, 155-173.	2.0	48
28	Current state of practice in railway track vibration isolation: an Australian overview. Australian Journal of Civil Engineering, 2016, 14, 63-71.	1.6	48
29	EXPERIMENTAL SIMULATION OF THE RAILWAY BALLAST BY RESILIENT MATERIALS AND ITS VERIFICATION BY MODAL TESTING. Experimental Techniques, 2008, 32, 29-35.	1.5	45
30	Strategic framework to achieve carbon-efficient construction and maintenance of railway infrastructure systems. Frontiers in Environmental Science, 2015, 3, .	3.3	44
31	Effect of a large asymmetrical wheel burden on flexural response and failure of railway concrete sleepers in track systems. Engineering Failure Analysis, 2008, 15, 1065-1075.	4.0	43
32	Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway. Sustainability, 2020, 12, 206.	3.2	41
33	Dynamic flexural influence on a railway concrete sleeper in track system due to a single wheel impact. Engineering Failure Analysis, 2009, 16, 705-712.	4.0	40
34	Composites for Timber-Replacement Bearers in Railway Switches and Crossings. Infrastructures, 2017, 2, 13.	2.8	40
35	Lifecycle Assessments of Railway Bridge Transitions Exposed to Extreme Climate Events. Frontiers in Built Environment, 2017, 3, .	2.3	40
36	Dynamic properties of railway track and its components: recent findings and future research direction. Insight: Non-Destructive Testing and Condition Monitoring, 2010, 52, 20-22.	0.6	38

#	Article	IF	CITATIONS
37	Field investigation and parametric study of greenhouse gas emissions from railway plain-line renewals. Transportation Research, Part D: Transport and Environment, 2016, 42, 77-90.	6.8	38
38	Comparison of structural design methods for railway composites and plastic sleepers and bearers. Australian Journal of Structural Engineering, 2017, 18, 160-177.	1.1	38
39	Effects of under sleeper pads on dynamic responses of railway prestressed concrete sleepers subjected to high intensity impact loads. Engineering Structures, 2020, 214, 110604.	5.3	38
40	Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems. Structural Monitoring and Maintenance, 2014, 1, 131-157.	1.7	38
41	Vibration Attenuation at Rail Joints through under Sleeper Pads. Procedia Engineering, 2017, 189, 193-198.	1.2	37
42	Introducing a New Limit States Design Concept to Railway Concrete Sleepers: An Australian Experience. Frontiers in Materials, 2014, 1, .	2.4	36
43	Dynamic Wheel–Rail Interaction Over Rail Squat Defects. Acoustics Australia, 2015, 43, 97-107.	2.4	36
44	Fatigue Life Assessment Method for Prestressed Concrete Sleepers. Frontiers in Built Environment, 2017, 3, .	2.3	36
45	Wet/dry influence on behaviors of closed-cell polymeric cross-linked foams under static, dynamic and impact loads. Construction and Building Materials, 2018, 187, 1092-1102.	7.2	36
46	NONLINEAR TRANSIENT ANALYSIS OF A RAILWAY CONCRETE SLEEPER IN A TRACK SYSTEM. International Journal of Structural Stability and Dynamics, 2008, 08, 505-520.	2.4	35
47	Wireless Sensor Networks: Toward Smarter Railway Stations. Infrastructures, 2018, 3, 24.	2.8	35
48	A Deep Learning Approach Towards Railway Safety Risk Assessment. IEEE Access, 2020, 8, 102811-102832.	4.2	35
49	Vulnerability of Structural Concrete to Extreme Climate Variances. Climate, 2018, 6, 40.	2.8	34
50	Learning From Accidents: Machine Learning for Safety at Railway Stations. IEEE Access, 2020, 8, 633-648.	4.2	34
51	Risks of Climate Change with Respect to the Singapore-Malaysia High Speed Rail System. Climate, 2016, 4, 65.	2.8	32
52	Heavy rainfall and flood vulnerability of Singapore-Malaysia high speed rail system. Australian Journal of Civil Engineering, 2016, 14, 123-131.	1.6	32
53	Identification of appropriate risk analysis techniques for railway turnout systems. Journal of Risk Research, 2018, 21, 974-995.	2.6	32
54	Nonlinear finite element analysis for structural capacity of railway prestressed concrete sleepers with rail seat abrasion. Engineering Failure Analysis, 2019, 95, 47-65.	4.0	32

#	Article	IF	CITATIONS
55	Flexural cracking-induced acoustic emission peak frequency shift in railway prestressed concrete sleepers. Engineering Structures, 2019, 178, 493-505.	5.3	32
56	Vibration Characteristics of Micro-Engineered Crumb Rubber Concrete for Railway Sleeper Applications. Journal of Advanced Concrete Technology, 2017, 15, 55-66.	1.8	31
57	Influences of piles on the ground vibration considering the train-track-soil dynamic interactions. Computers and Geotechnics, 2020, 120, 103455.	4.7	31
58	Recycled Aggregates Concrete Compressive Strength Prediction Using Artificial Neural Networks (ANNs). Infrastructures, 2021, 6, 17.	2.8	31
59	Evaluation of lateral stability of railway tracks due to ballast degradation. Construction and Building Materials, 2021, 278, 122342.	7.2	31
60	Dynamic Responses of Interspersed Railway Tracks to Moving Train Loads. International Journal of Structural Stability and Dynamics, 2018, 18, 1850011.	2.4	29
61	Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements. Engineering Failure Analysis, 2018, 93, 157-171.	4.0	29
62	Operational readiness for climate change of Malaysia high-speed rail. Proceedings of the Institution of Civil Engineers: Transport, 2016, 169, 308-320.	0.6	28
63	Dynamic Bayesian network-based system-level evaluation on fatigue reliability of orthotropic steel decks. Engineering Failure Analysis, 2019, 105, 1212-1228.	4.0	28
64	Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Overcrowding Level Risk Assessment in Railway Stations. Applied Sciences (Switzerland), 2020, 10, 5156.	2.5	28
65	Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale. Construction and Building Materials, 2018, 175, 735-745.	7.2	27
66	Bayesian network-based human error reliability assessment of derailments. Reliability Engineering and System Safety, 2020, 197, 106825.	8.9	27
67	Damage and failure modes of railway prestressed concrete sleepers with holes/web openings subject to impact loading conditions. Engineering Structures, 2018, 176, 840-848.	5.3	26
68	Does High-Speed Rail Influence Urban Dynamics and Land Pricing?. Sustainability, 2020, 12, 3012.	3.2	26
69	Structural Safety of Railway Prestressed Concrete Sleepers. Australian Journal of Structural Engineering, 2009, 9, 129-140.	1.1	25
70	The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction. Science of the Total Environment, 2018, 627, 934-941.	8.0	25
71	Influences of dynamic material properties of slab track components on the train-track vibration interactions. Engineering Failure Analysis, 2020, 115, 104633.	4.0	25
72	Detection and Severity Evaluation of Combined Rail Defects Using Deep Learning. Vibration, 2021, 4, 341-356.	1.9	25

#	Article	IF	CITATIONS
73	Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets. Reliability Engineering and System Safety, 2021, 213, 107684.	8.9	25
74	Life Cycle Assessment of Railway Ground-Borne Noise and Vibration Mitigation Methods Using Geosynthetics, Metamaterials and Ground Improvement. Sustainability, 2018, 10, 3753.	3.2	24
75	RideComfort: A Development of Crowdsourcing Smartphones in Measuring Train Ride Quality. Frontiers in Built Environment, 2017, 3, .	2.3	23
76	Environment-friendly recycled steel fibre reinforced concrete. Construction and Building Materials, 2022, 327, 126967.	7.2	23
77	Natural Hazard Risks on Railway Turnout Systems. Procedia Engineering, 2016, 161, 1254-1259.	1.2	22
78	Derailment-resistant performance of modular composite rail track slabs. Engineering Structures, 2018, 160, 1-11.	5.3	22
79	Evaluation of CO2 emissions from railway resurfacing maintenance activities. Transportation Research, Part D: Transport and Environment, 2018, 65, 458-465.	6.8	22
80	A through-life evaluation of end-of-life rolling stocks considering asset recycling, energy recovering, and financial benefit. Journal of Cleaner Production, 2019, 212, 1008-1024.	9.3	22
81	Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal. Sustainability, 2019, 11, 6631.	3.2	22
82	Dynamic train-track interactions over railway track stiffness transition zones using baseplate fastening systems. Engineering Failure Analysis, 2020, 118, 104866.	4.0	22
83	Mode shape curvature squares method for crack detection in railway prestressed concrete sleepers. Engineering Failure Analysis, 2019, 105, 386-401.	4.0	21
84	Global Warming Potentials Due to Railway Tunnel Construction and Maintenance. Applied Sciences (Switzerland), 2020, 10, 6459.	2.5	19
85	Additive manufacturing meta-functional composites for engineered bridge bearings: A review. Construction and Building Materials, 2020, 262, 120535.	7.2	19
86	The Effect of Unsupported Sleepers/Bearers on Dynamic Phenomena of a Railway Turnout System under Impact Loads. Applied Sciences (Switzerland), 2020, 10, 2320.	2.5	19
87	Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning. Materials, 2021, 14, 4068.	2.9	19
88	Structural Behaviours of Railway Prestressed Concrete Sleepers (Crossties) With Hole and Web Openings. Procedia Engineering, 2016, 161, 1247-1253.	1.2	18
89	Toughness of Railroad Concrete Crossties with Holes and Web Openings. Infrastructures, 2017, 2, 3.	2.8	18
90	Peridynamic Analysis of Rail Squats. Applied Sciences (Switzerland), 2018, 8, 2299.	2.5	18

#	Article	IF	CITATIONS
91	Influence of time-dependent material degradation on life cycle serviceability of interspersed railway tracks due to moving train loads. Engineering Structures, 2019, 199, 109625.	5.3	18
92	Damage Detection in Fiber-Reinforced Foamed Urethane Composite Railway Bearers Using Acoustic Emissions. Infrastructures, 2020, 5, 50.	2.8	18
93	Prediction of Thermal-Induced Buckling Failures of Ballasted Railway Tracks Using Artificial Neural Network (ANN). International Journal of Structural Stability and Dynamics, 2022, 22, .	2.4	18
94	Finite Element Modelling of Modular Precast Composites for Railway Track Support Structure: A Battle to Save Sydney Harbour Bridge. Australian Journal of Structural Engineering, 2015, 16, 150-168.	1.1	17
95	Investigation of the Dynamic Buckling of Spherical Shell Structures Due to Subsea Collisions. Applied Sciences (Switzerland), 2018, 8, 1148.	2.5	17
96	New Insights from Multibody Dynamic Analyses of a Turnout System under Impact Loads. Applied Sciences (Switzerland), 2019, 9, 4080.	2.5	17
97	The Self-Sealing Capacity of Environmentally Friendly, Highly Damped, Fibre-Reinforced Concrete. Materials, 2020, 13, 298.	2.9	17
98	Impact Damage Mechanism and Mitigation by Ballast Bonding at Railway Bridge Ends. International Journal of Railway Technology, 2014, 3, 1-22.	0.3	17
99	A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components. Reliability Engineering and System Safety, 2022, 218, 108130.	8.9	17
100	Life Cycle Cost Evaluation of Noise and Vibration Control Methods at Urban Railway Turnouts. Environments - MDPI, 2016, 3, 34.	3.3	16
101	Quantitative monitoring of brittle fatigue crack growth in railway steel using acoustic emission. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1211-1224.	2.0	16
102	Idealisations of Dynamic Modelling for Railway Ballast in Flood Conditions. Applied Sciences (Switzerland), 2019, 9, 1785.	2.5	16
103	Effect of Extreme Climate on Topology of Railway Prestressed Concrete Sleepers. Climate, 2019, 7, 17.	2.8	16
104	Saturated Ground Vibration Analysis Based on a Three-Dimensional Coupled Train-Track-Soil Interaction Model. Applied Sciences (Switzerland), 2019, 9, 4991.	2.5	16
105	Railway defect detection based on track geometry using supervised and unsupervised machine learning. Structural Health Monitoring, 2022, 21, 1757-1767.	7.5	16
106	Life cycle analysis of mitigation methodologies for railway rolling noise and groundbourne vibration. Journal of Environmental Management, 2017, 191, 75-82.	7.8	15
107	Dynamic Capacity Reduction of Railway Prestressed Concrete Sleepers Due to Surface Abrasions Considering the Effects of Strain Rate and Prestressing Losses. International Journal of Structural Stability and Dynamics, 2019, 19, 1940001.	2.4	15
108	Shaking Table Tests of Suspended Structures Equipped with Viscous Dampers. Applied Sciences (Switzerland), 2019, 9, 2616.	2.5	15

#	Article	IF	CITATIONS
109	Evaluation of remaining fatigue life of concrete sleeper based on field loading conditions. Engineering Failure Analysis, 2019, 105, 70-86.	4.0	15
110	Rail accident analysis using large-scale investigations of train derailments on switches and crossings: Comparing the performances of a novel stochastic mathematical prediction and various assumptions. Engineering Failure Analysis, 2019, 103, 203-216.	4.0	15
111	Methods to Monitor and Evaluate the Deterioration of Track and Its Components in a Railway In-Service: A Systemic Review. Frontiers in Built Environment, 2020, 6, .	2.3	15
112	Comparative studies into public private partnership and traditional investment approaches on the high-speed rail project linking 3 airports in Thailand. Transportation Research Interdisciplinary Perspectives, 2020, 5, 100116.	2.7	15
113	Buckling Analysis of Interspersed Railway Tracks. Applied Sciences (Switzerland), 2020, 10, 3091.	2.5	15
114	Benchmarking environmental and economic impacts from the HSR networks considering life cycle perspectives. Environmental Impact Assessment Review, 2021, 90, 106608.	9.2	15
115	Determination of Prestressing Force in Railway Concrete Sleepers Using Dynamic Relaxation Technique. Journal of Performance of Constructed Facilities, 2015, 29, .	2.0	14
116	Torsional Effect on Track-Support Structures of Railway Turnouts Crossing Impact. Journal of Transportation Engineering Part A: Systems, 2017, 143, .	1.4	14
117	In Situ Monitoring of Rail Squats in Three Dimensions Using Ultrasonic Technique. Experimental Techniques, 2016, 40, 1179-1185.	1.5	13
118	Numerical investigation into thermal load responses of railway transom bridge. Engineering Failure Analysis, 2016, 60, 280-295.	4.0	13
119	A Novel Separation Technique of Flexural Loading-Induced Acoustic Emission Sources in Railway Prestressed Concrete Sleepers. IEEE Access, 2019, 7, 51426-51440.	4.2	13
120	Machine Learning Aided Design and Prediction of Environmentally Friendly Rubberised Concrete. Sustainability, 2021, 13, 1691.	3.2	13
121	Nonlinear buckling instabilities of interspersed railway tracks. Computers and Structures, 2021, 249, 106516.	4.4	13
122	Case Study: the Influence of Oil-based Friction Modifier Quantity on Tram Braking Distance and Noise. Tribology in Industry, 2017, 39, 198-206.	1.1	13
123	Dynamic Effect on Vibration Signatures of Cracks in Railway Prestressed Concrete Sleepers. Advanced Materials Research, 0, 41-42, 233-239.	0.3	12
124	Modelling Railway Prestressed Concrete Sleepers (Crossties) With Holes and Web Openings. Procedia Engineering, 2016, 161, 1240-1246.	1.2	12
125	Early-age dynamic moduli of crumbed rubber concrete for compliant railway structures. Journal of Sustainable Cement-Based Materials, 2017, 6, 281-292.	3.1	12
126	Recycling of Rolling Stocks. Environments - MDPI, 2017, 4, 39.	3.3	12

#	Article	IF	CITATIONS
127	Far-Field Earthquake Responses of Overhead Line Equipment (OHLE) Structure Considering Soil-Structure Interaction. Frontiers in Built Environment, 2018, 4, .	2.3	12
128	Experimental and Numerical Investigations into Dynamic Modal Parameters of Fiber-Reinforced Foamed Urethane Composite Beams in Railway Switches and Crossings. Vibration, 2020, 3, 174-188.	1.9	12
129	GPR-assisted evaluation of probabilistic fatigue crack growth in rib-to-deck joints in orthotropic steel decks considering mixed failure models. Engineering Structures, 2022, 252, 113688.	5.3	12
130	Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning. Scientific Reports, 2022, 12, 6064.	3.3	12
131	Effectiveness of Using Elastomeric Pads to Mitigate Impact Vibration at an Urban Turnout Crossing. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2012, , 357-365.	0.3	11
132	Mitigation of Ground Vibration Generated by High-Speed Trains on Saturated Poroelastic Ground with Under-Sleeper Pads. Journal of Transportation Engineering, 2014, 140, 12-22.	0.9	11
133	Nonlinear Finite Element Modelling of Railway Turnout System considering Bearer/Sleeper-Ballast Interaction. Journal of Structures, 2015, 2015, 1-11.	0.3	11
134	Dynamic Pressure Analysis of Hemispherical Shell Vibrating in Unbounded Compressible Fluid. Applied Sciences (Switzerland), 2018, 8, 1938.	2.5	11
135	Risk-Based Maintenance Planning for Rail Fastening Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019, 5, .	1.7	11
136	The Total Track Inspection. Frontiers in Built Environment, 2019, 4, .	2.3	11
137	Large amplitude vibrations of imperfect spider web structures. Scientific Reports, 2020, 10, 19161.	3.3	11
138	Influences of ballast degradation on railway track buckling. Engineering Failure Analysis, 2021, 122, 105252.	4.0	11
139	Acoustic and Dynamic Characteristics of a Complex Urban Turnout Using Fibre-Reinforced Foamed Urethane (FFU) Bearers. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 377-384.	0.3	11
140	Free vibrations of precast modular steel-concrete composite railway track slabs. Steel and Composite Structures, 2017, 24, 113-128.	1.3	11
141	State-of-the-Art Review on Additive Manufacturing Technology in Railway Infrastructure Systems. Journal of Composites Science, 2022, 6, 7.	3.0	11
142	Impact fatigue responses of pre-stressed concrete sleepers in railway track systems. IES Journal Part A: Civil and Structural Engineering, 2009, 2, 47-58.	0.4	10
143	Briefing: Limit states design of railway concrete sleepers. Proceedings of the Institution of Civil Engineers: Transport, 2012, 165, 81-85.	0.6	10
144	Climate Change Adaptation for GeoRisks Mitigation of Railway Turnout Systems. Procedia Engineering, 2017, 189, 199-206.	1.2	10

#	Article	IF	CITATIONS
145	Sustainability Challenges in Managing End-of-Life Rolling Stocks. Frontiers in Built Environment, 2017, 3, .	2.3	10
146	Optimisation of schedules for the inspection of railway tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1577-1587.	2.0	10
147	Fatigue Assessment on Suspenders under Stochastic Wind and Traffic Loads Based on In-Situ Monitoring Data. Applied Sciences (Switzerland), 2019, 9, 3405.	2.5	10
148	Getting It Right on the Policy Prioritization for Rail Decarbonization: Evidence From Whole-Life CO2e Emissions of Railway Systems. Frontiers in Built Environment, 2021, 7, .	2.3	10
149	Life Cycle Sustainability Assessments of an Innovative FRP Composite Footbridge. Sustainability, 2021, 13, 13000.	3.2	10
150	Integration of Building Information Modeling and Machine Learning for Railway Defect Localization. IEEE Access, 2021, 9, 166039-166047.	4.2	10
151	Underpinning systems thinking in railway engineering education. Australasian Journal of Engineering Education, 2017, 22, 107-116.	1.4	9
152	Derailment-based Fault Tree Analysis on Risk Management of Railway Turnout Systems. IOP Conference Series: Materials Science and Engineering, 2017, 245, 042020.	0.6	9
153	Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032048.	0.6	9
154	A Decision Framework for Managing the Risk of Terrorist Threats at Rail Stations Interconnected with Airports. Safety, 2018, 4, 36.	1.7	9
155	Experimental Performance Evaluation of Multi-Storey Steel Plate Shear Walls Designed by Different Methods. International Journal of Civil Engineering, 2019, 17, 1145-1154.	2.0	9
156	Self-healing concrete. , 2020, , 825-856.		9
157	Sustainability and recyclability of composite materials for railway turnout systems. Journal of Cleaner Production, 2021, 285, 124890.	9.3	9
158	Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs. Steel and Composite Structures, 2016, 22, 537-565.	1.3	9
159	Seismic vulnerbility analysis of Bankstown's West Terrace railway bridge. Structural Engineering and Mechanics, 2016, 57, 569-585.	1.0	9
160	Monitoring of Rail Corrugation Growth on Sharp Curves For Track Maintenance Prioritisation. International Journal of Acoustics and Vibrations, 2018, 23, .	0.3	9
161	Numerical studies to evaluate crack propagation behaviour of prestressed concrete railway sleepers. Engineering Failure Analysis, 2022, 131, 105888.	4.0	9
162	Machine Learning Application to Eco-Friendly Concrete Design for Decarbonisation. Sustainability, 2021, 13, 13663.	3.2	9

#	Article	IF	CITATIONS
163	Self-Healing Performance Assessment of Bacterial-Based Concrete Using Machine Learning Approaches. Materials, 2022, 15, 4436.	2.9	9
164	Probabilistic Impact Fractures of Railway Prestressed Concrete Sleepers. Advanced Materials Research, 0, 41-42, 259-264.	0.3	8
165	Greener and Leaner—Unleashing Capacity of Railroad Concrete Ties via Limit States Concept. Journal of Transportation Engineering, 2011, 137, 241-247.	0.9	8
166	Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers. Journal of Physics: Conference Series, 2016, 744, 012101.	0.4	8
167	Nonlinear 3D finite-element modeling for structural failure analysis of concrete sleepers/bearers at an urban turnout diamond. , 2016, , 123-160.		8
168	Experimental Investigations into Earthquake Resistance of Steel Frame Retrofitted by Low-Yield-Point Steel Energy Absorbers. Applied Sciences (Switzerland), 2019, 9, 3299.	2.5	8
169	Stochastic Traffic-Based Fatigue Life Assessment of Rib-to-Deck Welding Joints in Orthotropic Steel Decks with Thickened Edge U-Ribs. Applied Sciences (Switzerland), 2019, 9, 2582.	2.5	8
170	On Hogging Bending Test Specifications of Railway Composite Sleepers and Bearers. Frontiers in Built Environment, 2020, 6, .	2.3	8
171	5G Intelligence Underpinning Railway Safety in the COVID-19 Era. Frontiers in Built Environment, 2021, 7, .	2.3	8
172	Digital twins for managing railway maintenance and resilience. Open Research Europe, 0, 1, 91.	2.0	8
173	Time-dependent behaviours of railway prestressed concrete sleepers in a track system. Engineering Failure Analysis, 2021, 127, 105500.	4.0	8
174	Eco-friendly High-Strength Concrete Engineered by Micro Crumb Rubber from Recycled Tires and Plastics for Railway Components. Advances in Civil Engineering Materials, 2020, 9, 210-226.	0.6	8
175	Evaluation of Railway Passenger Comfort With Machine Learning. IEEE Access, 2022, 10, 2372-2381.	4.2	8
176	Mechanical Properties and Energy-Absorption Capability of a 3D-Printed TPMS Sandwich Lattice Model for Meta-Functional Composite Bridge Bearing Applications. Journal of Composites Science, 2022, 6, 71.	3.0	8
177	Fatigue life modelling of railway prestressed concrete sleepers. Structures, 2022, 41, 643-656.	3.6	8
178	Crossing Phenomena in Overhead Line Equipment (OHLE) Structure in 3D Space Considering Soil-Structure Interaction. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032047.	0.6	7
179	Enhancing Railway Engineering Student Engagement Using Interactive Technology Embedded with Infotainment. Education Sciences, 2019, 9, 136.	2.6	7
180	Vibration-Induced Pressures on a Cylindrical Structure Surface in Compressible Fluid. Applied Sciences (Switzerland), 2019, 9, 1403.	2.5	7

#	Article	IF	CITATIONS
181	Sustainability of Vibration Mitigation Methods Using Meta-Materials/Structures along Railway Corridors Exposed to Adverse Weather Conditions. Sustainability, 2020, 12, 10236.	3.2	7
182	Assessment of Turnout-Related Derailments by Various Causes. Sustainable Civil Infrastructures, 2018, , 27-39.	0.2	7
183	Role of Railway Transportation in the Spread of the Coronavirus: Evidence From Wuhan-Beijing Railway Corridor. Frontiers in Built Environment, 2020, 6, .	2.3	7
184	Local Failure Modes and Critical Buckling Loads of a Meta-Functional Auxetic Sandwich Core for Composite Bridge Bearing Applications. Applied Sciences (Switzerland), 2021, 11, 10844.	2.5	7
185	Benchmarking Socio-Economic Impacts of High-Speed Rail Networks Using K-Nearest Neighbour and Pearson's Correlation Coefficient Techniques through Computational Model-Based Analysis. Applied Sciences (Switzerland), 2022, 12, 1520.	2.5	7
186	Systems Thinking Approach for Rail Freight Noise Mitigation. Acoustics Australia, 2016, 44, 193-194.	2.4	6
187	Impact capacity reduction in railway prestressed concrete sleepers with vertical holes. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012041.	0.6	6
188	Normalised curvature square ratio for detection of ballast voids and pockets under rail track sleepers. Journal of Physics: Conference Series, 2018, 1106, 012002.	0.4	6
189	Utilizing Big Data for Enhancing Passenger Safety in Railway Stations. IOP Conference Series: Materials Science and Engineering, 2019, 603, 052031.	0.6	6
190	Spectro-Temporal Responses of Curved Railway Tracks with Variable Radii of Arc Curves. International Journal of Structural Stability and Dynamics, 2019, 19, 1950044.	2.4	6
191	Large-Amplitude Vibrations of Spider Web Structures. Applied Sciences (Switzerland), 2020, 10, 6032.	2.5	6
192	Socioeconomic Benefits of the Shinkansen Network. Infrastructures, 2021, 6, 68.	2.8	6
193	Dynamic Performance of Concrete Turnout Bearers and Sleepers in Railway Switches and Crossings. Advances in Civil Engineering Materials, 2018, 7, 446-459.	0.6	6
194	Identification and prioritization of rail squat defects in the field using rail magnetisation technology. , 2015, , .		5
195	Finite element modelling of modular precast composites for railway track support structure: A battle to save Sydney Harbour Bridge. Australian Journal of Structural Engineering, 2015, 16, .	1.1	5
196	Need and Opportunities for a â€~Plan B' in Rail Track Inspection Schedules. Procedia Engineering, 2016, 161, 264-268.	1.2	5
197	LOD BIM Element specification for Railway Turnout Systems Risk Mitigation using the Information Delivery Manual. IOP Conference Series: Materials Science and Engineering, 2017, 245, 042022.	0.6	5
198	Reply to Giannakos, K. Comment on: Toughness of Railroad Concrete Crossties with Holes and Web Openings. Infrastructures 2017, 2, 3. Infrastructures, 2017, 2, 5.	2.8	5

#	Article	IF	CITATIONS
199	An Investigation to Optimize the Layout of Protective Blast Barriers Using Finite Element Modelling. IOP Conference Series: Materials Science and Engineering, 2017, 280, 012035.	0.6	5
200	The importance of â€~dynamics' in the design and performance-based testing criteria for railway track components. Procedia Structural Integrity, 2019, 21, 83-90.	0.8	5
201	Dynamic properties of fibre reinforced foamed urethane composites in wet and dry conditions. Materials Today: Proceedings, 2020, 29, 7-10.	1.8	5
202	The Use of e-Learning Technologies in the Russian University in the Training of Engineers of the XXI Century. IOP Conference Series: Materials Science and Engineering, 2020, 940, 012131.	0.6	5
203	Identification of Weather Influences on Flight Punctuality Using Machine Learning Approach. Climate, 2021, 9, 127.	2.8	5
204	Performance Improvement of Ballasted Railway Tracks Using Geocells: Present State of the Art. Springer Transactions in Civil and Environmental Engineering, 2020, , 277-318.	0.4	5
205	MECHANICAL PROPERTIES OF CONCRETE WITH RECYCLED COMPOSITE AND PLASTIC AGGREGATES. International Journal of GEOMATE, 2019, 17, .	0.3	5
206	Integration of Building Information Modeling (BIM) and Artificial Intelligence (AI) to Detect Combined Defects of Infrastructure in the Railway System. Lecture Notes in Civil Engineering, 2022, , 377-386.	0.4	5
207	Nonlinear Blast Responses of Thin Shell Roof Over Long Span Structures. International Journal of Structural Stability and Dynamics, 2021, 21, 2150031.	2.4	5
208	Digital Twin Aided Sustainability Assessment of Modern Light Rail Infrastructures. Frontiers in Built Environment, 0, 8, .	2.3	5
209	Disruption: A new component in the track inspection schedule. , 2016, , .		4
210	Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012068.	0.6	4
211	Static and dynamic behaviours of railway prestressed concrete sleepers with longitudinal through hole. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012099.	0.6	4
212	Environmental Risks and Uncertainty with Respect to the Utilization of Recycled Rolling Stocks. Environments - MDPI, 2017, 4, 62.	3.3	4
213	Dynamic responses of railway ballasted track considering rail pad deterioration. Journal of Physics: Conference Series, 2018, 1106, 012006.	0.4	4
214	Parameters and Boundary Conditions in Modelling the Track Deterioration in a Railway System. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032084.	0.6	4
215	Discussion of "Evaluation of an Innovative Composite Railway Sleeper for a Narrow-Gauge Track under Static Load―by Wahid Ferdous, Allan Manalo, Gerard Van Erp, Thiru Aravinthan, and Kazem Ghabraie. Journal of Composites for Construction, 2019, 23, 07018001.	3.2	4
216	Value of rescheduling of rail inspection. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 321-330.	2.0	4

#	Article	IF	CITATIONS
217	Smartphone Sensing and Identification of Shock Noise and Vibration Induced by Gym Activities. Acoustics Australia, 2020, 48, 349-361.	2.4	4
218	Briefing: Dynamic mode couplings of railway composite track slabs. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2020, 173, 81-87.	0.8	4
219	Sensitivity of a High-Speed Rail Development on Supply Chain and Logistics via Air-Rail-Road Freight Transportation. Frontiers in Built Environment, 2021, 7, .	2.3	4
220	Causal analysis of bus travel time reliability in Birmingham, UK. Results in Engineering, 2021, 12, 100280.	5.1	4
221	Large deflection analysis of orthotropic, elliptic membranes. Structural Engineering and Mechanics, 2009, 31, 625-638.	1.0	4
222	IMPACT RESPONSES OF PRESTRESSING TENDONS IN RAILWAY CONCRETE SLEEPERS IN HIGH SPEED RAIL ENVIRONMENTS. , 2015, , .		4
223	ENGINEERED MODEL FOR THE NUMERICAL INVESTIGATION INTO VIBRATION CHARACTERISTICS OF A NOVEL BRIDGE BEARING UNDER FREE-FREE AND FIXED BOUNDARY CONDITION. , 2020, , .		4
224	A net-zero future for freight. One Earth, 2021, 4, 1517-1519.	6.8	4
225	Machine Learning to Identify Dynamic Properties of Railway Track Components. International Journal of Structural Stability and Dynamics, 2022, 22, .	2.4	4
226	Compression behaviour of an extremely lightweight structure with a gyroid core used for bridge bearings. Materials Today: Proceedings, 2022, 65, 1656-1659.	1.8	4
227	Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032040.	0.6	3
228	Review On Feasibility of Using Satellite Imaging for Risk Management of Derailment Related Turnout Component Failures. IOP Conference Series: Materials Science and Engineering, 2017, 245, 042025.	0.6	3
229	Uncertainty Propagation Assessment in Railway-Track Degradation Model Using Bayes Linear Theory. Journal of Transportation Engineering Part A: Systems, 2018, 144, 04018026.	1.4	3
230	Resilience and Robustness of Composite Steel and Precast Concrete Track Slabs Exposed to Train Derailments. Frontiers in Built Environment, 2018, 4, .	2.3	3
231	Impact Load Response of PC Rail Joint Sleeper under a Passing Train. Journal of Physics: Conference Series, 2018, 1106, 012008.	0.4	3
232	Creep and Shrinkage Effects on Railway Prestressed Concrete Sleepers. , 2018, , .		3
233	Economics of Track Resilience. IOP Conference Series: Materials Science and Engineering, 0, 471, 062040.	0.6	3
234	Base isolation fibre-reinforced composite bearings using recycled rubber. IOP Conference Series: Materials Science and Engineering, 2019, 603, 022060.	0.6	3

#	Article	IF	CITATIONS
235	An Improvement on the End-of-Life of High-Speed Rail Rolling Stocks Considering CFRP Composite Material Replacement. Frontiers in Built Environment, 2019, 5, .	2.3	3
236	Hybrid Approach to Predict the Track Deterioration in a Railway in-Service: A Conceptual Design. IOP Conference Series: Materials Science and Engineering, 2019, 603, 032083.	0.6	3
237	Condition Monitoring of Overhead Line Equipment (OHLE) Structures Using Ground-Bourne Vibrations from Train Passages. Sustainable Civil Infrastructures, 2019, , 14-22.	0.2	3
238	Peridynamic Modeling of Rail Squats. Sustainable Civil Infrastructures, 2019, , 108-118.	0.2	3
239	Systemic values of enhanced dynamic damping in concrete sleepers – Comments on the paper: Ahn S, Kwon S, Hwang Y-T, Koh H-I, Kim H-S, Park J. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system, Composite Structures, 2019, 223:110944 (doi) Tj ETQq1 1 0.784314	4 rᢓᢆ ෪ ҇Ҭ /Ον	erlöck 10 Tfl
240	Failure modes of fibre reinforced foamed urethane composite beams: Full-scale experimental determination. Materials Today: Proceedings, 2020, 29, 11-15.	1.8	3
241	Viaduct maintenance for future traffic demands and earthquakes. Infrastructure Asset Management, 2020, 7, 256-268.	1.6	3
242	Parametric Studies Into Creep and Shrinkage Characteristics in Railway Prestressed Concrete Sleepers. Frontiers in Built Environment, 2020, 6, .	2.3	3
243	Train-track interactions over vulnerable railway turnout systems exposed to flooding conditions. Engineering Failure Analysis, 2021, 127, 105459.	4.0	3
244	Human Activity Vibrations. Data, 2021, 6, 104.	2.3	3
245	Failure investigations into interspersed railway tracks exposed to flood and washaway conditions under moving train loads. Engineering Failure Analysis, 2021, 129, 105726.	4.0	3
246	Influence of Asymmetrical Topology on Structural Behaviours of Bearers and Sleepers in Turnout Switches and Crossings. Sustainable Civil Infrastructures, 2018, , 51-60.	0.2	3
247	Effectiveness of Soft Baseplates and Fastenings to Mitigate Track Dynamic Settlement at Transition Zones on Railway Bridge Approaches. , 0, , .		3
248	Experimental Determination of the Effect of Wet/Dry Ballast on Dynamic Railway Sleeper/Ballast Interaction. Journal of Testing and Evaluation, 2008, 36, 412-415.	0.7	3
249	Comparative Investigations into Environment-Friendly Production Methods for Railway Prestressed Concrete Sleepers and Bearers. Sustainability, 2022, 14, 1059.	3.2	3
250	Quantification of Dynamic Track Stiffness Using Machine Learning. IEEE Access, 2022, 10, 78747-78753.	4.2	3
251	Discussion of "Mitigation of Ground Vibration Generated by High-Speed Trains on Saturated Poroelastic Ground with Under-Sleeper Pads―by Zhigang Cao, Yuanqiang Cai, and Jie Han. Journal of Transportation Engineering, 2015, 141, 07014003.	0.9	2
252	Disruption Management of Resource Schedule in Transportation Sector: Understanding the Concept and Strategy. Procedia Engineering, 2016, 161, 1295-1299.	1.2	2

#	Article	IF	CITATIONS
253	Time-Dependent Topology of Railway Prestressed Concrete Sleepers. IOP Conference Series: Materials Science and Engineering, 2017, 245, 032046.	0.6	2
254	Influence of vertical holes on creep and shrinkage of railway prestressed concrete sleepers. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012042.	0.6	2
255	Discussion of "Field Test Performance of Noncontact Ultrasonic Rail Inspection System―by Stefano Mariani, Thompson Nguyen, Xuan Zhu, and Francesco Lanza di Scalea. Journal of Transportation Engineering Part A: Systems, 2018, 144, 07018001.	1.4	2
256	Discussion: Prospects in elongation of railway transition curves. Proceedings of the Institution of Civil Engineers: Transport, 2018, , 1-2.	0.6	2
257	A Stochastic Approach for Life-Cycle Cost Analysis of Railway Turnouts Exposed to Climate Uncertainties. Proceedings (mdpi), 2018, 2, .	0.2	2
258	Lifecycle cost analysis for operations and maintenance planning of railway bridge transition. , 2018, , .		2
259	A Life-Cycle Cost Analysis of Railway Turnouts Exposed to Climate Uncertainties. IOP Conference Series: Materials Science and Engineering, 2019, 471, 062026.	0.6	2
260	Contact Conditions over Turnout Crossing Noses. IOP Conference Series: Materials Science and Engineering, 2019, 471, 062027.	0.6	2
261	Editorial: Safety, Risk and Uncertainties in Transportation and Transit Systems. Frontiers in Built Environment, 2019, 5, .	2.3	2
262	Insights into noise and vibration stemming from the gym's heavy lifting. Sport Sciences for Health, 0, , 1.	1.3	2
263	Editorial: Best Practices on Advanced Condition Monitoring of Rail Infrastructure Systems, Volume II. Frontiers in Built Environment, 2021, 7, .	2.3	2
264	DYNAMIC BEHAVIOUR OF RAILWAY BALLAST EXPOSED TO FLOODING CONDITIONS. International Journal of GEOMATE, 2019, 16, .	0.3	2
265	Carbon Emissions Analysis of Rail Resurfacing Work: A Case Study, Practical Guideline and Systems Thinking Approach. , 0, , .		2
266	Dynamic Responses of Railway Bridge Ends: A Systems Performance Improvement by Application of Ballast Glue/Bond. , 0, , .		2
267	Bootstrap Statistical Analysis of GHG Emission from Railway Maintenance and Renewal Projects. , 0, , .		2
268	DYNAMIC RESPONSES OF RAILWAY ULTRA-HIGH-STRENGTH CONCRETE SLEEPERS UNDER EXTREME IMPACT LOADING. , 2017, , .		2
269	NONLINEAR MODELLING AND ANALYSIS OF MOVING TRAIN LOADS ON INTERSPERSED RAILWAY TRACKS. , 2017, , .		2
270	Vulnerability of Railway Switches and Crossings Exposed to Flooding Conditions. Lecture Notes in Civil Engineering, 2022, , 337-348.	0.4	2

#	Article	IF	CITATIONS
271	Crack Propagation Assessment of Time-Dependent Concrete Degradation of Prestressed Concrete Sleepers. Sustainability, 2022, 14, 3217.	3.2	2
272	Mechanisms and Evolution of Cracks in Prestressed Concrete Sleepers Exposed to Time-Dependent Actions. Applied Sciences (Switzerland), 2022, 12, 5511.	2.5	2
273	Rail infrastructure systems and hazards. , 2022, , 97-109.		2
274	Static and dynamic behaviours of helical spring in MR fluid. Journal of Physics: Conference Series, 2016, 744, 012112.	0.4	1
275	Uncovering Urban Dynamic Mobility Patterns Influenced by the Socio-Technical Impacts of High Speed Rail Investments. , 2018, , .		1
276	Evaluating the residual life of aged railway bridges. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2018, 171, 153-162.	0.5	1
277	Role of Pre-processing in Textual Data Fusion: Learn From the Croydon Tram Tragedy. Frontiers in Built Environment, 2018, 4, .	2.3	1
278	Peridynamics Modelling of Rail Surface Defects in Urban Railway and Metro Systems. Proceedings (mdpi), 2018, 2, .	0.2	1
279	Structural Crack Identification in Railway Prestressed Concrete Sleepers Using Dynamic Mode Shapes. Proceedings (mdpi), 2018, 2, 1139.	0.2	1
280	Urbanisation Through the Benefits of High-Speed Rail System. IOP Conference Series: Materials Science and Engineering, 2019, 471, 102006.	0.6	1
281	Analysis of Impact On Land Pricing from High-Speed-Rail in Honshu Area. IOP Conference Series: Materials Science and Engineering, 2019, 471, 092011.	0.6	1
282	Editorial: Best Practices on Advanced Condition Monitoring of Rail Infrastructure Systems. Frontiers in Built Environment, 2020, 6, .	2.3	1
283	Editorial: UK-Japan Symposium on Highspeed Rails. Frontiers in Built Environment, 2020, 6, .	2.3	1
284	Attenuation Effect of Material Damping on Impact Vibration Responses of Railway Concrete Sleepers. Sustainable Civil Infrastructures, 2019, , 98-107.	0.2	1
285	In Situ Monitoring of Multi-Stage Rail Surface Defects in Three Dimensions using a Mobile Ultrasonic Technique. , 0, , .		1
286	Risk and Resilience of Railway Infrastructure: An Assessment on Uncertainties of Rail Accidents to Improve Risk and Resilience Through Long-Term Data Analysis. Lecture Notes in Civil Engineering, 2022, , 17-27.	0.4	1
287	Fatigue life losses of railway concrete sleepers due to surface abrasions. , 2018, , .		1
288	Complex-system decision framework for managing risks to rail stations at airports from terrorist		1

threats. , 2018, , .

#	Article	IF	CITATIONS
289	Failure of Overhead Line Equipment (OHLE) Structure Under Hurricane. Sustainable Civil Infrastructures, 2020, , 54-63.	0.2	1
290	Digital twins for managing railway maintenance and resilience. Open Research Europe, 0, 1, 91.	2.0	1
291	Al-Based Quantification of Fitness Activities Using Smartphones. Sustainability, 2022, 14, 690.	3.2	1
292	Impact Noise and Vibration Sources Induced by Heavy Gym Activities: Do They in Turn Unnecessarily, Indirectly Affect Our Health?. Applied Sciences (Switzerland), 2021, 11, 11812.	2.5	1
293	Reliability Quantification of Railway Electrification Mast Structure Considering Buckling. Frontiers in Built Environment, 2021, 7, .	2.3	1
294	Numerical investigation of porous composite honeycomb track slab under point load. Materials Today: Proceedings, 2022, , .	1.8	1
295	Diagnostics and management methods for concrete sleepers. , 2022, , 271-294.		1
296	Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012016.	0.6	0
297	Nonlinear Dynamic of Curved Railway Tracks in Three-Dimensional Space. IOP Conference Series: Materials Science and Engineering, 2017, 280, 012036.	0.6	Ο
298	Performance of Railway Sleepers with Holes under Impact Loading. IOP Conference Series: Materials Science and Engineering, 2017, 280, 012020.	0.6	0
299	Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails. IOP Conference Series: Materials Science and Engineering, 2017, 280, 012019.	0.6	Ο
300	Value Added Strategy for Unplanned Rail Track Inspections. Proceedings (mdpi), 2018, 2, .	0.2	0
301	3D Numerical Simulations for Response and Performance Prediction of Railway Composite Track Slabs under Derailments. , 2018, , .		Ο
302	Effect of Extreme Climate on Long-term Performance of Railway Prestressed Concrete Sleepers. Proceedings (mdpi), 2018, 2, .	0.2	0
303	Dynamic Properties Evaluation of Railway Ballast Using Impact Excitation Technique. Proceedings (mdpi), 2018, 2, .	0.2	Ο
304	Foreword: 2018 International Symposium on Rail Infrastructure Systems Engineering (i-RISE 2018). Proceedings (mdpi), 2018, 2, .	0.2	0
305	An Analysis of Urbanisation Sustainability Effect from High-Speed Rail in Honshu Area. Proceedings (mdpi), 2018, 2, .	0.2	0
306	Self-Healing and Highly-Damped Concrete for Applications as Railway Sleepers and Track Slabs. Proceedings (mdpi), 2018, 2, 1144.	0.2	0

#	Article	IF	CITATIONS
307	Performance and Durability of Concrete Structures in Railway Environment under Extreme Climate. , 2018, , .		0
308	Risk Management Prediction for Overcrowding in Railway Stations Utilising Adaptive Nero Fuzzy Inference System (ANFIS). IOP Conference Series: Materials Science and Engineering, 2019, 603, 052030.	0.6	0
309	Impact Responses of the Highspeed Railway Track Slabs. IOP Conference Series: Materials Science and Engineering, 2019, 603, 042044.	0.6	0
310	DYNAMIC AMPLIFICATION FACTORS FOR RAILWAY TURNOUT BEARERS IN SWITCHES AND CROSSINGS. , 2017, , .		0
311	Asymmetrical effects on railway turnout bearers due to wheelset impact over a crossing nose. , 2018, ,		0
312	Effects of vertical and through holes on cyclic behaviour of railway concrete sleepers. , 2018, , .		0
313	Experimental and Numerical Investigations of Flexural Behaviour of Composite Bearers in Railway Switches and Crossings. Sustainable Civil Infrastructures, 2020, , 104-113.	0.2	Ο
314	In Situ Monitoring of Rail Squats in Three Dimensions Using Ultrasonic Technique. Experimental Techniques, 2015, , n/a-n/a.	1.5	0
315	Special Issue "Extreme Sciences and Engineeringâ€: Applied Sciences (Switzerland), 2021, 11, 10654.	2.5	0
316	Investigation into Ground Vibration Responses of High-Speed Rail Slab Tracks Considering Train-Track-Soil Interactions. Lecture Notes in Civil Engineering, 2022, , 337-347.	0.4	0
317	Risk-based maintenance of turnout systems. , 2022, , 341-353.		0
318	Railway turnouts and inspection technologies. , 2022, , 319-340.		0
319	Management of railway stations exposed to a terrorist threat. , 2022, , 81-96.		0
320	Responses of mast structure and overhead line equipment (OHLE) subjected to extreme events. , 2022, , 425-439.		0
321	Reliability quantification of the overhead line conductor. , 2022, , 441-462.		0