Stuart West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms. Nature Communications, 2022, 13, 195.	5.8	7
2	Kin selection for cooperation in natural bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
3	Playing god with evolution. Nature Ecology and Evolution, 2022, , .	3.4	0
4	Ten recent insights for our understanding of cooperation. Nature Ecology and Evolution, 2021, 5, 419-430.	3.4	54
5	A solution to a sex ratio puzzle in Melittobia wasps. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024656118.	3.3	9
6	Payoff-based learning best explains the rate of decline in cooperation across 237 public-goods games. Nature Human Behaviour, 2021, 5, 1330-1338.	6.2	30
7	Cooperative interactions among females can lead to even more extraordinary sex ratios. Evolution Letters, 2021, 5, 370-384.	1.6	8
8	Relatedness and the evolution of mechanisms to divide labor in microorganisms. Ecology and Evolution, 2021, 11, 14475-14489.	0.8	10
9	The evolution of division of labour in structured and unstructured groups. ELife, 2021, 10, .	2.8	12
10	Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nature Ecology and Evolution, 2021, 5, 1624-1636.	3.4	25
11	The evolution of cheating in viruses. Nature Communications, 2021, 12, 6928.	5.8	14
12	The cost and benefit of quorum sensing ontrolled bacteriocin production in <i>Lactobacillus plantarum</i> . Journal of Evolutionary Biology, 2020, 33, 101-111.	0.8	33
13	The social coevolution hypothesis for the origin of enzymatic cooperation. Nature Ecology and Evolution, 2020, 4, 132-137.	3.4	10
14	Compartmentalization drives the evolution of symbiotic cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190602.	1.8	55
15	Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. Evolution Letters, 2020, 4, 65-72.	1.6	5
16	Transmission, relatedness, and the evolution of cooperative symbionts. Journal of Evolutionary Biology, 2019, 32, 1036-1045.	0.8	16
17	Honest signaling and the double counting of inclusive fitness. Evolution Letters, 2019, 3, 428-433.	1.6	4
18	Crystal toxins and the volunteer's dilemma in bacteria. Journal of Evolutionary Biology, 2019, 32, 310-319.	0.8	11

#	Article	lF	CITATIONS
19	Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. Current Biology, 2019, 29, 2043-2050.e8.	1.8	107
20	Conflict within cooperation. Current Biology, 2019, 29, R425-R426.	1.8	10
21	Functional amyloids promote retention of public goods in bacteria. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190709.	1.2	7
22	Altruism in a virus. Nature Microbiology, 2019, 4, 910-911.	5.9	8
23	The costs and benefits of multicellular group formation in algae*. Evolution; International Journal of Organic Evolution, 2019, 73, 1296-1308.	1.1	23
24	The evolution of collective infectious units in viruses. Virus Research, 2019, 265, 94-101.	1.1	31
25	Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi. Ecology and Evolution, 2019, 9, 2425-2435.	0.8	7
26	Adaptation is maintained by the parliament of genes. Nature Communications, 2019, 10, 5163.	5.8	22
27	Darwin's aliens. International Journal of Astrobiology, 2019, 18, 1-9.	0.9	19
28	Bacteria Use Collective Behavior to Generate Diverse Combat Strategies. Current Biology, 2018, 28, 345-355.e4.	1.8	88
29	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	3.3	90
30	Beneficial coinfection can promote within-host viral diversity. Virus Evolution, 2018, 4, vey028.	2.2	29
31	Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biology, 2018, 16, e2006671.	2.6	38
32	Modeling relatedness and demography in social evolution. Evolution Letters, 2018, 2, 260-271.	1.6	20
33	Division of labour and the evolution of extreme specialization. Nature Ecology and Evolution, 2018, 2, 1161-1167.	3.4	74
34	The coevolution of cooperation and cognition in humans. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180723.	1.2	22
35	Reproductive strategies of diurnal muttillid wasps (Hymenoptera: Mutillidae). Contributions in Science, 2018, 526, 181-188.	0.3	2
36	Cooperation facilitates the colonization of harsh environments. Nature Ecology and Evolution, 2017, 1, 57.	3.4	96

#	Article	IF	CITATIONS
37	Signalling of information that is neither cryptic nor private. Journal of Evolutionary Biology, 2017, 30, 806-813.	0.8	6
38	Sociomics: Using Omic Approaches to Understand Social Evolution. Trends in Genetics, 2017, 33, 408-419.	2.9	23
39	Social learning and the demise of costly cooperation in humans. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170067.	1.2	25
40	The <i>Pseudomonas aeruginosa</i> PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms. MBio, 2017, 8, .	1.8	59
41	Evidence for strategic cooperation in humans. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170689.	1.2	15
42	Growth rate, transmission mode and virulence in human pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160094.	1.8	45
43	Fast-killing parasites can be favoured in spatially structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160096.	1.8	11
44	Bacteriocins and the assembly of natural <i>Pseudomonas fluorescens</i> populations. Journal of Evolutionary Biology, 2017, 30, 352-360.	0.8	29
45	The evolution of cooperation in simple molecular replicators. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171967.	1.2	15
46	Sociovirology: Conflict, Cooperation, and Communication among Viruses. Cell Host and Microbe, 2017, 22, 437-441.	5.1	98
47	Cheating and resistance to cheating in natural populations of the bacterium <i>Pseudomonas fluorescens</i> . Evolution; International Journal of Organic Evolution, 2017, 71, 2484-2495.	1.1	38
48	Molecular markers reveal reproductive strategies of nonâ€pollinating fig wasps. Ecological Entomology, 2017, 42, 689-696.	1.1	6
49	The evolution of host-symbiont dependence. Nature Communications, 2017, 8, 15973.	5.8	202
50	Kin Selection in the RNA World. Life, 2017, 7, 53.	1.1	2
51	Pyoverdin cheats fail to invade bacterial populations in stationary phase. Journal of Evolutionary Biology, 2016, 29, 1728-1736.	0.8	16
52	Division of labour in microorganisms: an evolutionary perspective. Nature Reviews Microbiology, 2016, 14, 716-723.	13.6	138
53	Sibling conflict and dishonest signaling in birds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13803-13808.	3.3	46
54	Unpredictable environments lead to the evolution of parental neglect in birds. Nature Communications, 2016, 7, 10985.	5.8	87

#	Article	IF	CITATIONS
55	Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nature Plants, 2016, 2, 16063.	4.7	23
56	Multicellular group formation in response to predators in the alga <i>Chlorella vulgaris</i> . Journal of Evolutionary Biology, 2016, 29, 551-559.	0.8	42
57	Learning in a black box. Journal of Economic Behavior and Organization, 2016, 127, 1-15.	1.0	46
58	Evolution: Welcome to Symbiont Prison. Current Biology, 2016, 26, R66-R68.	1.8	13
59	Conditional cooperation and confusion in public-goods experiments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1291-1296.	3.3	103
60	Restricting mutualistic partners to enforce trade reliance. Nature Communications, 2016, 7, 10322.	5.8	16
61	Coâ€evolutionary dynamics between public good producers andÂcheats in the bacterium <i>Pseudomonas aeruginosa</i> . Journal of Evolutionary Biology, 2015, 28, 2264-2274.	0.8	62
62	Fighting in fig wasps: do males avoid killing brothers or do they never meet them?. Ecological Entomology, 2015, 40, 741-747.	1.1	6
63	Major evolutionary transitions in individuality. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10112-10119.	3.3	278
64	Cooperation, clumping and the evolution of multicellularity. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151075.	1.2	21
65	Evolving new organisms via symbiosis. Science, 2015, 348, 392-394.	6.0	64
66	Payoff-based learning explains the decline in cooperation in public goods games. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142678.	1.2	64
67	Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution; International Journal of Organic Evolution, 2015, 69, 2371-2383.	1.1	35
68	Bacteriocin-mediated competition in cystic fibrosis lung infections. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150972.	1.2	40
69	The Evolution of Altruism in Humans. Annual Review of Psychology, 2015, 66, 575-599.	9.9	207
70	Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees. American Naturalist, 2014, 184, 777-786.	1.0	25
71	INEXPLICABLY FEMALE-BIASED SEX RATIOS IN <i>MELITTOBIA</i> WASPS. Evolution; International Journal of Organic Evolution, 2014, 68, 2709-2717.	1.1	13
72	TOWARD AN EVOLUTIONARY DEFINITION OF CHEATING. Evolution; International Journal of Organic Evolution, 2014, 68, 318-331.	1.1	157

#	Article	IF	CITATIONS
73	An experimental study of strong reciprocity in bacteria. Biology Letters, 2014, 10, 20131069.	1.0	13
74	Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis. PLoS ONE, 2014, 9, e83124.	1.1	77
75	Inclusive fitness: 50 years on. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130356.	1.8	46
76	Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus. Infection and Immunity, 2014, 82, 1045-1051.	1.0	108
77	Haplodiploidy and the Evolution of Eusociality: Worker Revolution. American Naturalist, 2014, 184, 303-317.	1.0	12
78	THE NICHE CONSTRUCTION PERSPECTIVE: A CRITICAL APPRAISAL. Evolution; International Journal of Organic Evolution, 2014, 68, 1231-1243.	1.1	179
79	An experimental test of whether cheating is context dependent. Journal of Evolutionary Biology, 2014, 27, 551-556.	0.8	60
80	A BIOLOGICAL MARKET ANALYSIS OF THE PLANT-MYCORRHIZAL SYMBIOSIS. Evolution; International Journal of Organic Evolution, 2014, 68, 2603-2618.	1.1	84
81	HANDICAPS ARE UNNECESSARY FOR HUMAN COMMUNICATION. , 2014, , .		0
82	Adaptation and Inclusive Fitness. Current Biology, 2013, 23, R577-R584.	1.8	132
83	Can natural selection favour altruism between species?. Journal of Evolutionary Biology, 2013, 26, 1854-1865.	0.8	18
84	Combined inequality in wealth and risk leads to disaster in the climate change game. Climatic Change, 2013, 120, 815-830.	1.7	56
85	Ecology, Not the Genetics of Sex Determination, Determines Who Helps in Eusocial Populations. Current Biology, 2013, 23, 2383-2387.	1.8	64
86	Multicoloured greenbeards, bacteriocin diversity and the rockâ€paperâ€scissors game. Journal of Evolutionary Biology, 2013, 26, 2081-2094.	0.8	42
87	Human behavioral ecology. Behavioral Ecology, 2013, 24, 1043-1045.	1.0	8
88	Group Formation, Relatedness, and the Evolution of Multicellularity. Current Biology, 2013, 23, 1120-1125.	1.8	142
89	Fewer invited talks by women in evolutionary biology symposia. Journal of Evolutionary Biology, 2013, 26, 2063-2069.	0.8	120

#	Article	IF	CITATIONS
91	Prosocial preferences do not explain human cooperation in public-goods games. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 216-221.	3.3	122
92	What do humans maximize?. , 2012, , 23-49.		3
93	Mechanisms of Pathogenesis, Infective Dose and Virulence in Human Parasites. PLoS Pathogens, 2012, 8, e1002512.	2.1	95
94	Promiscuity and the evolution of cooperative breeding. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1405-1411.	1.2	61
95	How do communication systems emerge?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1943-1949.	1.2	62
96	The Dynamics of Cooperative Bacterial Virulence in the Field. Science, 2012, 337, 85-88.	6.0	112
97	Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8259-8263.	3.3	269
98	Quorum sensing and the confusion about diffusion. Trends in Microbiology, 2012, 20, 586-594.	3.5	136
99	Spatial Structure and Interspecific Cooperation: Theory and an Empirical Test Using the Mycorrhizal Mutualism. American Naturalist, 2012, 179, E133-E146.	1.0	54
100	Quorum-sensing and cheating in bacterial biofilms. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4765-4771.	1.2	175
101	Kin selection, quorum sensing and virulence in pathogenic bacteria. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3584-3588.	1.2	73
102	Haplodiploidy and the Evolution of Eusociality: Split Sex Ratios. American Naturalist, 2012, 179, 240-256.	1.0	54
103	Pseudocompetition among groups increases human cooperation in a public-goods game. Animal Behaviour, 2012, 84, 947-952.	0.8	44
104	Correlates of Cooperation in a One-Shot High-Stakes Televised Prisoners' Dilemma. PLoS ONE, 2012, 7, e33344.	1.1	10
105	Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 2011, 333, 880-882.	6.0	1,373
106	The quantitative genetic basis of sex ratio variation in Nasonia vitripennis: a QTL study. Journal of Evolutionary Biology, 2011, 24, 12-22.	0.8	44
107	The genetical theory of kin selection. Journal of Evolutionary Biology, 2011, 24, 1020-1043.	0.8	336
108	ARE GREENBEARDS INTRAGENOMIC OUTLAWS?. Evolution; International Journal of Organic Evolution, 2011, 65, 2729-2742.	1.1	27

#	Article	IF	CITATIONS
109	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	13.7	339
110	Sexual conflict in viscous populations: The effect of the timing of dispersal. Theoretical Population Biology, 2011, 80, 298-316.	0.5	29
111	Social Evolution: Evolving Sex Ratios. Current Biology, 2011, 21, R992-R994.	1.8	0
112	Sixteen common misconceptions about the evolution of cooperation in humans. Evolution and Human Behavior, 2011, 32, 231-262.	1.4	485
113	Evolutionary Theory and the Ultimate–Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science, 2011, 6, 38-47.	5.2	496
114	Lethal combat over limited resources: testing the importance of competitors and kin. Behavioral Ecology, 2011, 22, 923-931.	1.0	38
115	Cooperation in humans: competition between groups and proximate emotions. Evolution and Human Behavior, 2010, 31, 104-108.	1.4	67
116	GREENBEARDS. Evolution; International Journal of Organic Evolution, 2010, 64, 25-38.	1.1	225
117	THE ENFORCEMENT OF COOPERATION BY POLICING. Evolution; International Journal of Organic Evolution, 2010, 64, 2139-52.	1.1	50
118	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10.	13.7	5
119	Promiscuity and the evolutionary transition to complex societies. Nature, 2010, 466, 969-972.	13.7	324
120	Repression of competition favours cooperation: experimental evidence from bacteria. Journal of Evolutionary Biology, 2010, 23, 699-706.	0.8	32
121	Fitness correlates with the extent of cheating in a bacterium. Journal of Evolutionary Biology, 2010, 23, 738-747.	0.8	83
122	Competition between relatives and the evolution of dispersal in a parasitoid wasp. Journal of Evolutionary Biology, 2010, 23, 1374-1385.	0.8	28
123	Constraints on adaptation: explaining deviation from optimal sex ratio using artificial neural networks. Journal of Evolutionary Biology, 2010, 23, 1708-1719.	0.8	9
124	Resistance to extreme strategies, rather than prosocial preferences, can explain human cooperation in public goods games. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10125-10130.	3.3	72
125	Altruism, Spite, and Greenbeards. Science, 2010, 327, 1341-1344.	6.0	217
126	Virginity and the clutch size behavior of a parasitoid wasp where mothers mate their sons. Behavioral Ecology, 2010, 21, 730-738.	1.0	11

#	Article	IF	CITATIONS
127	Viscous medium promotes cooperation in the pathogenic bacterium <i>Pseudomonas aeruginosa</i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3531-3538.	1.2	200
128	Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3157-3168.	1.8	127
129	Quorum Sensing and the Social Evolution of Bacterial Virulence. Current Biology, 2009, 19, 341-345.	1.8	273
130	Evolution: What Is an Organism?. Current Biology, 2009, 19, R1080-R1082.	1.8	19
131	Male morphology and dishonest signalling in a fig wasp. Animal Behaviour, 2009, 78, 147-153.	0.8	20
132	Extremely female-biased primary sex ratio and precisely constant male production in a parasitoid wasp Melittobia. Animal Behaviour, 2009, 78, 515-523.	0.8	23
133	Adaptation and the evolution of parasite virulence in a connected world. Nature, 2009, 459, 983-986.	13.7	156
134	LIMITED DISPERSAL, BUDDING DISPERSAL, AND COOPERATION: AN EXPERIMENTAL STUDY. Evolution; International Journal of Organic Evolution, 2009, 63, 939-949.	1.1	163
135	DENSITY DEPENDENCE AND COOPERATION: THEORY AND A TEST WITH BACTERIA. Evolution; International Journal of Organic Evolution, 2009, 63, 2315-2325.	1.1	115
136	Phenotypic plasticity of a cooperative behaviour in bacteria. Journal of Evolutionary Biology, 2009, 22, 589-598.	0.8	147
137	Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. Journal of Evolutionary Biology, 2009, 22, 2445-2457.	0.8	138
138	Genomic Imprinting and Sex Allocation. American Naturalist, 2009, 173, E1-E14.	1.0	41
139	Sex Allocation. , 2009, , .		425
140	Parasitism and breeding system variation in North American populations of Daphnia pulex. Ecological Research, 2008, 23, 235-240.	0.7	17
141	How host plant variability influences the advantages to learning: A theoretical model for oviposition behaviour in Lepidoptera. Journal of Theoretical Biology, 2008, 251, 404-410.	0.8	14
142	EFFECTS OF SPONTANEOUS MUTATION ACCUMULATION ON SEX RATIO TRAITS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2008, 62, 1921-1935.	1.1	26
143	Social semantics: how useful has group selection been?. Journal of Evolutionary Biology, 2008, 21, 374-385.	0.8	134
144	Fighting strategies in two species of fig wasp. Animal Behaviour, 2008, 76, 315-322.	0.8	39

#	Article	IF	CITATIONS
145	Facultative Sex Ratio Adjustment in Natural Populations of Wasps: Cues of Local Mate Competition and the Precision of Adaptation. American Naturalist, 2008, 172, 393-404.	1.0	65
146	Split sex ratios in the social Hymenoptera: a meta-analysis. Behavioral Ecology, 2008, 19, 382-390.	1.0	65
147	Communication in bacteria. , 2008, , 11-32.		6
148	The Relation between Multilocus Population Genetics and Social Evolution Theory. American Naturalist, 2007, 169, 207-226.	1.0	132
149	Frequency Dependence and Cooperation: Theory and a Test with Bacteria. American Naturalist, 2007, 170, 331-342.	1.0	266
150	Spiteful Soldiers and Sex Ratio Conflict in Polyembryonic Parasitoid Wasps. American Naturalist, 2007, 169, 519-533.	1.0	79
151	Group selection and kin selection: Two concepts but one process. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6736-6739.	3.3	266
152	Lethal combat and sex ratio evolution in a parasitoid wasp. Behavioral Ecology, 2007, 18, 709-715.	1.0	31
153	Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1241-1249.	1.8	206
154	The Social Lives of Microbes. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 53-77.	3.8	636
155	A Sex Allocation Theory for Vertebrates: Combining Local Resource Competition and Conditionâ€Dependent Allocation. American Naturalist, 2007, 170, E112-E128.	1.0	58
156	The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis. Heredity, 2007, 98, 69-73.	1.2	34
157	Cooperation and conflict in quorum-sensing bacterial populations. Nature, 2007, 450, 411-414.	13.7	737
158	The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology, 2007, 20, 577-587.	0.8	28
159	Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 2007, 20, 415-432.	0.8	1,541
160	Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiology Ecology, 2007, 62, 135-141.	1.3	146
161	Evolutionary Explanations for Cooperation. Current Biology, 2007, 17, R661-R672.	1.8	815
162	Social Evolution: The Decline and Fall of Genetic Kin Recognition. Current Biology, 2007, 17, R810-R812.	1.8	56

#	Article	IF	CITATIONS
163	Information use in space and time: sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Animal Behaviour, 2007, 73, 971-977.	0.8	22
164	Laboratory evolution of polyandry in the parasitoid wasp Nasonia vitripennis. Animal Behaviour, 2007, 74, 1147-1154.	0.8	30
165	Lethal male–male combat in the parasitoid Melittobia acasta: are size and competitive environment important?. Animal Behaviour, 2007, 74, 1163-1169.	0.8	28
166	Asymmetric larval competition in the parasitoid wasp Nasonia vitripennis: a role in sex allocation?. Behavioral Ecology and Sociobiology, 2007, 61, 1751-1758.	0.6	30
167	Is Bacterial Persistence a Social Trait?. PLoS ONE, 2007, 2, e752.	1.1	83
168	Demography, altruism, and the benefits of budding. Journal of Evolutionary Biology, 2006, 19, 1707-1716.	0.8	189
169	Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. Journal of Evolutionary Biology, 2006, 19, 1603-1611.	0.8	19
170	Social evolution theory for microorganisms. Nature Reviews Microbiology, 2006, 4, 597-607.	13.6	993
171	Male influence on sex allocation in the parasitoid wasp Nasonia vitripennis. Behavioral Ecology and Sociobiology, 2006, 59, 829-835.	0.6	47
172	Cooperation and the Scale of Competition in Humans. Current Biology, 2006, 16, 1103-1106.	1.8	181
173	Social Evolution: Cooperation by Conflict. Current Biology, 2006, 16, R365-R367.	1.8	2
174	Altruism. Current Biology, 2006, 16, R482-R483.	1.8	30
175	Spite. Current Biology, 2006, 16, R662-R664.	1.8	35
176	Sex ratios under asymmetrical local mate competition in the parasitoid wasp Nasonia vitripennis. Behavioral Ecology, 2006, 17, 345-352.	1.0	47
177	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041.	0.8	36
178	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1211-1228.	1.1	118
179	Evolution: Revenge of the Clones!. Current Biology, 2005, 15, R547-R549.	1.8	2
180	Figs and fig wasps. Current Biology, 2005, 15, R978-R980.	1.8	25

#	Article	IF	CITATIONS
181	The costs and benefits of host feeding in parasitoids. Animal Behaviour, 2005, 69, 1293-1301.	0.8	55
182	Host cell preference and variable transmission strategies in malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 511-517.	1.2	51
183	The Illusion of Invariant Quantities in Life Histories. Science, 2005, 309, 1236-1239.	6.0	109
184	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1211.	1.1	10
185	Cooperative Breeders Adjust Offspring Sex Ratios to Produce Helpful Helpers. American Naturalist, 2005, 166, 628-632.	1.0	81
186	A Dimensionless Invariant for Relative Size at Sex Change in Animals: Explanation and Implications. American Naturalist, 2005, 165, 551-566.	1.0	23
187	Sex Ratios under Asymmetrical Local Mate Competition: Theory and a Test with Parasitoid Wasps. American Naturalist, 2005, 166, 301-316.	1.0	100
188	Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution; International Journal of Organic Evolution, 2005, 59, 1211-28.	1.1	41
189	Bacteriocins, spite and virulence. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1529-1535.	1.2	208
190	SEX-RATIO EVOLUTION IN SEX CHANGING ANIMALS. Evolution; International Journal of Organic Evolution, 2004, 58, 1019.	1.1	3
191	Learning, odour preference and flower foraging in moths. Journal of Experimental Biology, 2004, 207, 87-94.	0.8	140
192	Testing Small Clutch Size Models with Daphnia. American Naturalist, 2004, 163, 880-887.	1.0	21
193	Information constraints and the precision of adaptation: Sex ratio manipulation in wasps. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10363-10367.	3.3	114
194	ECOLOGY: Spite Among Siblings. Science, 2004, 305, 1413-1414.	6.0	28
195	Spite and the scale of competition. Journal of Evolutionary Biology, 2004, 17, 1195-1203.	0.8	190
196	SEX-RATIO EVOLUTION IN SEX CHANGING ANIMALS. Evolution; International Journal of Organic Evolution, 2004, 58, 1019-1027.	1.1	82
197	Sex change and relative body size in animals (reply). Nature, 2004, 428, 2-2.	13.7	2
198	Cooperation and competition in pathogenic bacteria. Nature, 2004, 430, 1024-1027.	13.7	901

#	Article	IF	CITATIONS
199	Wasp sex ratios when females on a patch are related. Animal Behaviour, 2004, 68, 331-336.	0.8	45
200	Maternal Dominance, Maternal Condition, and Offspring Sex Ratio in Ungulate Mammals. American Naturalist, 2004, 163, 40-54.	1.0	406
201	Cooperation and Punishment, Especially in Humans. American Naturalist, 2004, 164, 753-764.	1.0	205
202	Toxoplasma gondii, sex and premature rejection. Trends in Parasitology, 2003, 19, 155-157.	1.5	8
203	Even more extreme fertility insurance and the sex ratios of protozoan blood parasites. Journal of Theoretical Biology, 2003, 223, 515-521.	0.8	43
204	Constant relative age and size at sex change for sequentially hermaphroditic fish. Journal of Evolutionary Biology, 2003, 16, 921-929.	0.8	84
205	Kin discrimination and sex ratios in a parasitoid wasp. Journal of Evolutionary Biology, 2003, 17, 208-216.	0.8	56
206	Host sanctions and the legume–rhizobium mutualism. Nature, 2003, 425, 78-81.	13.7	838
207	Changing sex at the same relative body size. Nature, 2003, 425, 783-784.	13.7	57
208	TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2003, 57, 1698-1703.	1.1	18
209	Darwinian Agriculture: When Can Humans Find Solutions Beyond The Reach of Natural Selection?. Quarterly Review of Biology, 2003, 78, 145-168.	0.0	161
210	Kin Discrimination and the Benefit of Helping in Cooperatively Breeding Vertebrates. Science, 2003, 302, 634-636.	6.0	370
211	TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2003, 57, 1698.	1.1	7
212	Cooperation, virulence and siderophore production in bacterial parasites. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 37-44.	1.2	292
213	Sex ratios in the rodent malaria parasite, Plasmodium chabaudi. Parasitology, 2003, 127, 419-425.	0.7	29
214	Cooperation and Competition Between Relatives. Science, 2002, 296, 72-75.	6.0	701
215	Sanctions and mutualism stability: why do rhizobia fix nitrogen?. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 685-694.	1.2	292
216	FERTILITY INSURANCE AND THE SEX RATIOS OF MALARIA AND RELATED HEMOSPORORIN BLOOD PARASITES. Journal of Parasitology, 2002, 88, 258-263.	0.3	63

#	Article	IF	CITATIONS
217	Fertility Insurance and the Sex Ratios of Malaria and Related Hemospororin Blood Parasites. Journal of Parasitology, 2002, 88, 258.	0.3	3
218	Inbreeding and parasite sex ratios. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 755-760.	1.2	46
219	Using sex ratios: why bother?. , 2002, , 399-413.		14
220	Constraints in the Evolution of Sex Ratio Adjustment. Science, 2002, 295, 1685-1688.	6.0	429
221	Kin selection: fact and fiction. Trends in Ecology and Evolution, 2002, 17, 15-21.	4.2	315
222	Sex ratios of malaria parasites and related protozoa. , 2002, , 314-332.		12
223	A General Model for Host Plant Selection in Phytophagous Insects. Journal of Theoretical Biology, 2002, 214, 499-513.	0.8	69
224	Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. Journal of Applied Ecology, 2002, 39, 745-754.	1.9	89
225	The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Molecular Ecology, 2002, 11, 1815-1829.	2.0	47
226	Sanctions and mutualism stability: when should less beneficial mutualists be tolerated?. Journal of Evolutionary Biology, 2002, 15, 830-837.	0.8	165
227	Sex ratios. Heredity, 2002, 88, 117-124.	1.2	132
228	Pollination and parasitism in functionally dioecious figs. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 651-659.	1.2	70
229	Immune stress and facultative sex in a parasitic nematode. Journal of Evolutionary Biology, 2001, 14, 333-337.	0.8	29
230	Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep?. Heredity, 2001, 87, 294-304.	1.2	86
231	Host selection in phytophagous insects: a new explanation for learning in adults. Oikos, 2001, 95, 537-543.	1.2	54
232	Testing Hamilton's rule with competition between relatives. Nature, 2001, 409, 510-513.	13.7	253
233	Evolution of gametocyte sex ratios in malaria and related apicomplexan (protozoan) parasites. Trends in Parasitology, 2001, 17, 525-531.	1.5	81
234	Variable host quality, life-history invariants, and the reproductive strategy of a parasitoid wasp that produces single sex clutches. Behavioral Ecology, 2001, 12, 577-583.	1.0	28

#	Article	IF	CITATIONS
235	Selective Regime and Fig Wasp Sex Ratios: Toward Sorting Rigor from Pseudo-Rigor in Tests of Adaptation. , 2001, , 191-218.		38
236	Using sex ratios to estimate what limits reproduction in parasitoids. Ecology Letters, 2000, 3, 294-299.	3.0	37
237	Paying for sex is not easy. Nature, 2000, 407, 962-962.	13.7	7
238	EVOLUTION: The Benefits of Allocating Sex. Science, 2000, 290, 288-290.	6.0	151
239	Sex allocation and population structure in apicomplexan (protozoa) parasites. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 257-263.	1.2	58
240	Seasonal variation in the sex allocation of a neotropical solitary bee. Behavioral Ecology, 1999, 10, 401-408.	1.0	29
241	A pluralist approach to sex and recombination. Journal of Evolutionary Biology, 1999, 12, 1003-1012.	0.8	467
242	Sex may need more than one. Journal of Evolutionary Biology, 1999, 12, 1053-1055.	0.8	9
243	Sex allocation and clutch size in parasitoid wasps that produce single-sex broods. Animal Behaviour, 1999, 57, 265-275.	0.8	43
244	Male–killingWolbachiain two species of insect. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 735-740.	1.2	343
245	Local mate competition, variable fecundity and information use in a parasitoid. Animal Behaviour, 1998, 56, 191-198.	0.8	72
246	Wolbachiain two insect host–parasitoid communities. Molecular Ecology, 1998, 7, 1457-1465.	2.0	177
247	Learning in the nectar foraging behaviour ofHelicoverpa armigera. Ecological Entomology, 1998, 23, 363-369.	1.1	59
248	Stabilizing Selection and Variance in Fig Wasp Sex Ratios. Evolution; International Journal of Organic Evolution, 1998, 52, 475.	1.1	34
249	Influence of Rat Strain on Larval Production by the Parasitic Nematode Strongyloides ratti. Journal of Parasitology, 1998, 84, 1289.	0.3	2
250	Virginity in haplodiploid populations: a comparison of estimation methods. Ecological Entomology, 1998, 23, 207-210.	1.1	18
251	Partial local mate competition and the sex ratio: A study on non-pollinating fig wasps. Journal of Evolutionary Biology, 1998, 11, 531.	0.8	11
252	Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 747-754.	1.2	90

#	Article	IF	CITATIONS
253	Conflict of interest in a mutualism: documenting the elusive fig wasp–seed trade–off. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1501-1507.	1.2	123
254	A comparative study of virginity in fig wasps. Animal Behaviour, 1997, 54, 437-450.	0.8	51
255	Sex Ratio Strategies After Perturbation of the Stable Age Distribution. Journal of Theoretical Biology, 1997, 186, 213-221.	0.8	49
256	Fig–associated wasps: pollinators and parasites, sex–ratio adjustment and male polymorphism, population structure and its consequences. , 1997, , 226-239.		89
257	The Relationship between Parasitoid Size and Fitness in the Field, a Study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). Journal of Animal Ecology, 1996, 65, 631.	1.3	135
258	The ecology and evolution of the New World non-pollinating fig wasp communities. Journal of Biogeography, 1996, 23, 447-458.	1.4	139
259	The ecology of the New World fig-parasitizing wasps Idarnes and implications for the evolution of the fig–pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 1994, 258, 67-72.	1.2	150
260	Learning in a Black Box. SSRN Electronic Journal, 0, , .	0.4	5
261	Green Blobs and Predatory Beasts: Clues to Multicellularity. Frontiers for Young Minds, 0, 7, .	0.8	0