Stuart West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211375/publications.pdf

Version: 2024-02-01

261 papers 29,180 citations

81 h-index 157 g-index

286 all docs

286 docs citations

times ranked

286

17881 citing authors

#	Article	IF	CITATIONS
1	Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology, 2007, 20, 415-432.	0.8	1,541
2	Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 2011, 333, 880-882.	6.0	1,373
3	Social evolution theory for microorganisms. Nature Reviews Microbiology, 2006, 4, 597-607.	13.6	993
4	Cooperation and competition in pathogenic bacteria. Nature, 2004, 430, 1024-1027.	13.7	901
5	Host sanctions and the legume–rhizobium mutualism. Nature, 2003, 425, 78-81.	13.7	838
6	Evolutionary Explanations for Cooperation. Current Biology, 2007, 17, R661-R672.	1.8	815
7	Cooperation and conflict in quorum-sensing bacterial populations. Nature, 2007, 450, 411-414.	13.7	737
8	Cooperation and Competition Between Relatives. Science, 2002, 296, 72-75.	6.0	701
9	The Social Lives of Microbes. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 53-77.	3.8	636
10	Evolutionary Theory and the Ultimate–Proximate Distinction in the Human Behavioral Sciences. Perspectives on Psychological Science, 2011, 6, 38-47.	5.2	496
11	Sixteen common misconceptions about the evolution of cooperation in humans. Evolution and Human Behavior, 2011, 32, 231-262.	1.4	485
12	A pluralist approach to sex and recombination. Journal of Evolutionary Biology, 1999, 12, 1003-1012.	0.8	467
13	Constraints in the Evolution of Sex Ratio Adjustment. Science, 2002, 295, 1685-1688.	6.0	429
14	Sex Allocation., 2009,,.		425
15	Maternal Dominance, Maternal Condition, and Offspring Sex Ratio in Ungulate Mammals. American Naturalist, 2004, 163, 40-54.	1.0	406
16	Kin Discrimination and the Benefit of Helping in Cooperatively Breeding Vertebrates. Science, 2003, 302, 634-636.	6.0	370
17	Male–killingWolbachiain two species of insect. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 735-740.	1.2	343
18	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	13.7	339

#	Article	IF	CITATIONS
19	The genetical theory of kin selection. Journal of Evolutionary Biology, 2011, 24, 1020-1043.	0.8	336
20	Promiscuity and the evolutionary transition to complex societies. Nature, 2010, 466, 969-972.	13.7	324
21	Kin selection: fact and fiction. Trends in Ecology and Evolution, 2002, 17, 15-21.	4.2	315
22	Sanctions and mutualism stability: why do rhizobia fix nitrogen?. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 685-694.	1.2	292
23	Cooperation, virulence and siderophore production in bacterial parasites. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 37-44.	1.2	292
24	Major evolutionary transitions in individuality. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10112-10119.	3.3	278
25	Quorum Sensing and the Social Evolution of Bacterial Virulence. Current Biology, 2009, 19, 341-345.	1.8	273
26	Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8259-8263.	3.3	269
27	Frequency Dependence and Cooperation: Theory and a Test with Bacteria. American Naturalist, 2007, 170, 331-342.	1.0	266
28	Group selection and kin selection: Two concepts but one process. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6736-6739.	3.3	266
29	Testing Hamilton's rule with competition between relatives. Nature, 2001, 409, 510-513.	13.7	253
30	GREENBEARDS. Evolution; International Journal of Organic Evolution, 2010, 64, 25-38.	1.1	225
31	Altruism, Spite, and Greenbeards. Science, 2010, 327, 1341-1344.	6.0	217
32	Bacteriocins, spite and virulence. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1529-1535.	1.2	208
33	The Evolution of Altruism in Humans. Annual Review of Psychology, 2015, 66, 575-599.	9.9	207
34	Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1241-1249.	1.8	206
35	Cooperation and Punishment, Especially in Humans. American Naturalist, 2004, 164, 753-764.	1.0	205
36	The evolution of host-symbiont dependence. Nature Communications, 2017, 8, 15973.	5.8	202

#	Article	IF	Citations
37	Viscous medium promotes cooperation in the pathogenic bacterium (i>Pseudomonas aeruginosa (i>). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3531-3538.	1.2	200
38	Spite and the scale of competition. Journal of Evolutionary Biology, 2004, 17, 1195-1203.	0.8	190
39	Demography, altruism, and the benefits of budding. Journal of Evolutionary Biology, 2006, 19, 1707-1716.	0.8	189
40	Cooperation and the Scale of Competition in Humans. Current Biology, 2006, 16, 1103-1106.	1.8	181
41	THE NICHE CONSTRUCTION PERSPECTIVE: A CRITICAL APPRAISAL. Evolution; International Journal of Organic Evolution, 2014, 68, 1231-1243.	1.1	179
42	Wolbachiain two insect host–parasitoid communities. Molecular Ecology, 1998, 7, 1457-1465.	2.0	177
43	Quorum-sensing and cheating in bacterial biofilms. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4765-4771.	1.2	175
44	Sanctions and mutualism stability: when should less beneficial mutualists be tolerated?. Journal of Evolutionary Biology, 2002, 15, 830-837.	0.8	165
45	LIMITED DISPERSAL, BUDDING DISPERSAL, AND COOPERATION: AN EXPERIMENTAL STUDY. Evolution; International Journal of Organic Evolution, 2009, 63, 939-949.	1.1	163
46	Darwinian Agriculture: When Can Humans Find Solutions Beyond The Reach of Natural Selection?. Quarterly Review of Biology, 2003, 78, 145-168.	0.0	161
47	TOWARD AN EVOLUTIONARY DEFINITION OF CHEATING. Evolution; International Journal of Organic Evolution, 2014, 68, 318-331.	1.1	157
48	Adaptation and the evolution of parasite virulence in a connected world. Nature, 2009, 459, 983-986.	13.7	156
49	EVOLUTION: The Benefits of Allocating Sex. Science, 2000, 290, 288-290.	6.0	151
50	The ecology of the New World fig-parasitizing wasps Idarnes and implications for the evolution of the fig–pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences, 1994, 258, 67-72.	1.2	150
51	Phenotypic plasticity of a cooperative behaviour in bacteria. Journal of Evolutionary Biology, 2009, 22, 589-598.	0.8	147
52	Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiology Ecology, 2007, 62, 135-141.	1.3	146
53	Group Formation, Relatedness, and the Evolution of Multicellularity. Current Biology, 2013, 23, 1120-1125.	1.8	142
54	Learning, odour preference and flower foraging in moths. Journal of Experimental Biology, 2004, 207, 87-94.	0.8	140

#	Article	IF	Citations
55	The ecology and evolution of the New World non-pollinating fig wasp communities. Journal of Biogeography, 1996, 23, 447-458.	1.4	139
56	Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. Journal of Evolutionary Biology, 2009, 22, 2445-2457.	0.8	138
57	Division of labour in microorganisms: an evolutionary perspective. Nature Reviews Microbiology, 2016, 14, 716-723.	13.6	138
58	Quorum sensing and the confusion about diffusion. Trends in Microbiology, 2012, 20, 586-594.	3.5	136
59	The Relationship between Parasitoid Size and Fitness in the Field, a Study of Achrysocharoides zwoelferi (Hymenoptera: Eulophidae). Journal of Animal Ecology, 1996, 65, 631.	1.3	135
60	Social semantics: how useful has group selection been?. Journal of Evolutionary Biology, 2008, 21, 374-385.	0.8	134
61	Sex ratios. Heredity, 2002, 88, 117-124.	1.2	132
62	The Relation between Multilocus Population Genetics and Social Evolution Theory. American Naturalist, 2007, 169, 207-226.	1.0	132
63	Adaptation and Inclusive Fitness. Current Biology, 2013, 23, R577-R584.	1.8	132
64	Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3157-3168.	1.8	127
65	Conflict of interest in a mutualism: documenting the elusive fig wasp–seed trade–off. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1501-1507.	1.2	123
66	Prosocial preferences do not explain human cooperation in public-goods games. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 216-221.	3.3	122
67	Fewer invited talks by women in evolutionary biology symposia. Journal of Evolutionary Biology, 2013, 26, 2063-2069.	0.8	120
68	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1211-1228.	1.1	118
69	DENSITY DEPENDENCE AND COOPERATION: THEORY AND A TEST WITH BACTERIA. Evolution; International Journal of Organic Evolution, 2009, 63, 2315-2325.	1.1	115
70	Information constraints and the precision of adaptation: Sex ratio manipulation in wasps. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10363-10367.	3.3	114
71	The Dynamics of Cooperative Bacterial Virulence in the Field. Science, 2012, 337, 85-88.	6.0	112
72	The Illusion of Invariant Quantities in Life Histories. Science, 2005, 309, 1236-1239.	6.0	109

#	Article	IF	CITATIONS
73	Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus. Infection and Immunity, 2014, 82, 1045-1051.	1.0	108
74	Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. Current Biology, 2019, 29, 2043-2050.e8.	1.8	107
75	Conditional cooperation and confusion in public-goods experiments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1291-1296.	3.3	103
76	Sex Ratios under Asymmetrical Local Mate Competition: Theory and a Test with Parasitoid Wasps. American Naturalist, 2005, 166, 301-316.	1.0	100
77	Sociovirology: Conflict, Cooperation, and Communication among Viruses. Cell Host and Microbe, 2017, 22, 437-441.	5.1	98
78	Cooperation facilitates the colonization of harsh environments. Nature Ecology and Evolution, 2017, 1, 57.	3.4	96
79	Mechanisms of Pathogenesis, Infective Dose and Virulence in Human Parasites. PLoS Pathogens, 2012, 8, e1002512.	2.1	95
80	Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 747-754.	1.2	90
81	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	3.3	90
82	Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. Journal of Applied Ecology, 2002, 39, 745-754.	1.9	89
83	Fig–associated wasps: pollinators and parasites, sex–ratio adjustment and male polymorphism, population structure and its consequences. , 1997, , 226-239.		89
84	Bacteria Use Collective Behavior to Generate Diverse Combat Strategies. Current Biology, 2018, 28, 345-355.e4.	1.8	88
85	Unpredictable environments lead to the evolution of parental neglect in birds. Nature Communications, 2016, 7, 10985.	5.8	87
86	Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep?. Heredity, 2001, 87, 294-304.	1.2	86
87	Constant relative age and size at sex change for sequentially hermaphroditic fish. Journal of Evolutionary Biology, 2003, 16, 921-929.	0.8	84
88	A BIOLOGICAL MARKET ANALYSIS OF THE PLANT-MYCORRHIZAL SYMBIOSIS. Evolution; International Journal of Organic Evolution, 2014, 68, 2603-2618.	1.1	84
89	Fitness correlates with the extent of cheating in a bacterium. Journal of Evolutionary Biology, 2010, 23, 738-747.	0.8	83
90	Is Bacterial Persistence a Social Trait?. PLoS ONE, 2007, 2, e752.	1.1	83

#	Article	IF	Citations
91	SEX-RATIO EVOLUTION IN SEX CHANGING ANIMALS. Evolution; International Journal of Organic Evolution, 2004, 58, 1019-1027.	1.1	82
92	Evolution of gametocyte sex ratios in malaria and related apicomplexan (protozoan) parasites. Trends in Parasitology, 2001, 17, 525-531.	1.5	81
93	Cooperative Breeders Adjust Offspring Sex Ratios to Produce Helpful Helpers. American Naturalist, 2005, 166, 628-632.	1.0	81
94	Spiteful Soldiers and Sex Ratio Conflict in Polyembryonic Parasitoid Wasps. American Naturalist, 2007, 169, 519-533.	1.0	79
95	Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis. PLoS ONE, 2014, 9, e83124.	1.1	77
96	Division of labour and the evolution of extreme specialization. Nature Ecology and Evolution, 2018, 2, 1161-1167.	3.4	74
97	Kin selection, quorum sensing and virulence in pathogenic bacteria. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3584-3588.	1.2	73
98	Local mate competition, variable fecundity and information use in a parasitoid. Animal Behaviour, 1998, 56, 191-198.	0.8	72
99	Resistance to extreme strategies, rather than prosocial preferences, can explain human cooperation in public goods games. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10125-10130.	3.3	72
100	Pollination and parasitism in functionally dioecious figs. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 651-659.	1.2	70
101	A General Model for Host Plant Selection in Phytophagous Insects. Journal of Theoretical Biology, 2002, 214, 499-513.	0.8	69
102	Cooperation in humans: competition between groups and proximate emotions. Evolution and Human Behavior, 2010, 31, 104-108.	1.4	67
103	Facultative Sex Ratio Adjustment in Natural Populations of Wasps: Cues of Local Mate Competition and the Precision of Adaptation. American Naturalist, 2008, 172, 393-404.	1.0	65
104	Split sex ratios in the social Hymenoptera: a meta-analysis. Behavioral Ecology, 2008, 19, 382-390.	1.0	65
105	Ecology, Not the Genetics of Sex Determination, Determines Who Helps in Eusocial Populations. Current Biology, 2013, 23, 2383-2387.	1.8	64
106	Evolving new organisms via symbiosis. Science, 2015, 348, 392-394.	6.0	64
107	Payoff-based learning explains the decline in cooperation in public goods games. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142678.	1.2	64
108	FERTILITY INSURANCE AND THE SEX RATIOS OF MALARIA AND RELATED HEMOSPORORIN BLOOD PARASITES. Journal of Parasitology, 2002, 88, 258-263.	0.3	63

#	Article	IF	CITATIONS
109	How do communication systems emerge?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1943-1949.	1.2	62
110	Coâ€evolutionary dynamics between public good producers andÂcheats in the bacterium <i>Pseudomonas aeruginosa</i> . Journal of Evolutionary Biology, 2015, 28, 2264-2274.	0.8	62
111	Promiscuity and the evolution of cooperative breeding. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1405-1411.	1.2	61
112	An experimental test of whether cheating is context dependent. Journal of Evolutionary Biology, 2014, 27, 551-556.	0.8	60
113	Learning in the nectar foraging behaviour ofHelicoverpa armigera. Ecological Entomology, 1998, 23, 363-369.	1.1	59
114	The $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$ PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms. MBio, 2017, 8, .	1.8	59
115	Sex allocation and population structure in apicomplexan (protozoa) parasites. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 257-263.	1.2	58
116	A Sex Allocation Theory for Vertebrates: Combining Local Resource Competition and Conditionâ€Dependent Allocation. American Naturalist, 2007, 170, E112-E128.	1.0	58
117	Changing sex at the same relative body size. Nature, 2003, 425, 783-784.	13.7	57
118	Kin discrimination and sex ratios in a parasitoid wasp. Journal of Evolutionary Biology, 2003, 17, 208-216.	0.8	56
119	Social Evolution: The Decline and Fall of Genetic Kin Recognition. Current Biology, 2007, 17, R810-R812.	1.8	56
120	Combined inequality in wealth and risk leads to disaster in the climate change game. Climatic Change, 2013, 120, 815-830.	1.7	56
121	The costs and benefits of host feeding in parasitoids. Animal Behaviour, 2005, 69, 1293-1301.	0.8	55
122	Compartmentalization drives the evolution of symbiotic cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190602.	1.8	55
123	Host selection in phytophagous insects: a new explanation for learning in adults. Oikos, 2001, 95, 537-543.	1.2	54
124	Spatial Structure and Interspecific Cooperation: Theory and an Empirical Test Using the Mycorrhizal Mutualism. American Naturalist, 2012, 179, E133-E146.	1.0	54
125	Haplodiploidy and the Evolution of Eusociality: Split Sex Ratios. American Naturalist, 2012, 179, 240-256.	1.0	54
126	Ten recent insights for our understanding of cooperation. Nature Ecology and Evolution, 2021, 5, 419-430.	3 . 4	54

#	Article	IF	CITATIONS
127	A comparative study of virginity in fig wasps. Animal Behaviour, 1997, 54, 437-450.	0.8	51
128	Host cell preference and variable transmission strategies in malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 511-517.	1.2	51
129	THE ENFORCEMENT OF COOPERATION BY POLICING. Evolution; International Journal of Organic Evolution, 2010, 64, 2139-52.	1.1	50
130	Sex Ratio Strategies After Perturbation of the Stable Age Distribution. Journal of Theoretical Biology, 1997, 186, 213-221.	0.8	49
131	The incidence and diversity of Wolbachia in gallwasps (Hymenoptera; Cynipidae) on oak. Molecular Ecology, 2002, 11, 1815-1829.	2.0	47
132	Male influence on sex allocation in the parasitoid wasp Nasonia vitripennis. Behavioral Ecology and Sociobiology, 2006, 59, 829-835.	0.6	47
133	Sex ratios under asymmetrical local mate competition in the parasitoid wasp Nasonia vitripennis. Behavioral Ecology, 2006, 17, 345-352.	1.0	47
134	Inbreeding and parasite sex ratios. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 755-760.	1.2	46
135	Inclusive fitness: 50 years on. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130356.	1.8	46
136	Sibling conflict and dishonest signaling in birds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13803-13808.	3.3	46
137	Learning in a black box. Journal of Economic Behavior and Organization, 2016, 127, 1-15.	1.0	46
138	Wasp sex ratios when females on a patch are related. Animal Behaviour, 2004, 68, 331-336.	0.8	45
139	Growth rate, transmission mode and virulence in human pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160094.	1.8	45
140	The quantitative genetic basis of sex ratio variation in Nasonia vitripennis: a QTL study. Journal of Evolutionary Biology, 2011, 24, 12-22.	0.8	44
141	Pseudocompetition among groups increases human cooperation in a public-goods game. Animal Behaviour, 2012, 84, 947-952.	0.8	44
142	Sex allocation and clutch size in parasitoid wasps that produce single-sex broods. Animal Behaviour, 1999, 57, 265-275.	0.8	43
143	Even more extreme fertility insurance and the sex ratios of protozoan blood parasites. Journal of Theoretical Biology, 2003, 223, 515-521.	0.8	43
144	Multicoloured greenbeards, bacteriocin diversity and the rockâ€paperâ€scissors game. Journal of Evolutionary Biology, 2013, 26, 2081-2094.	0.8	42

#	Article	IF	CITATIONS
145	Multicellular group formation in response to predators in the alga <i>Chlorella vulgaris</i> Journal of Evolutionary Biology, 2016, 29, 551-559.	0.8	42
146	Genomic Imprinting and Sex Allocation. American Naturalist, 2009, 173, E1-E14.	1.0	41
147	Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution; International Journal of Organic Evolution, 2005, 59, 1211-28.	1.1	41
148	Bacteriocin-mediated competition in cystic fibrosis lung infections. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150972.	1.2	40
149	Fighting strategies in two species of fig wasp. Animal Behaviour, 2008, 76, 315-322.	0.8	39
150	Lethal combat over limited resources: testing the importance of competitors and kin. Behavioral Ecology, 2011, 22, 923-931.	1.0	38
151	Cheating and resistance to cheating in natural populations of the bacterium (i>Pseudomonas fluorescens (i>). Evolution; International Journal of Organic Evolution, 2017, 71, 2484-2495.	1.1	38
152	Pleiotropy, cooperation, and the social evolution of genetic architecture. PLoS Biology, 2018, 16, e2006671.	2.6	38
153	Selective Regime and Fig Wasp Sex Ratios: Toward Sorting Rigor from Pseudo-Rigor in Tests of Adaptation., 2001,, 191-218.		38
154	Using sex ratios to estimate what limits reproduction in parasitoids. Ecology Letters, 2000, 3, 294-299.	3.0	37
154	Using sex ratios to estimate what limits reproduction in parasitoids. Ecology Letters, 2000, 3, 294-299. The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041.	3.0	37
	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps.		
155	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041.	0.8	36
155 156	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041. Spite. Current Biology, 2006, 16, R662-R664. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution;	0.8	36 35
155 156 157	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041. Spite. Current Biology, 2006, 16, R662-R664. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution; International Journal of Organic Evolution, 2015, 69, 2371-2383. Stabilizing Selection and Variance in Fig Wasp Sex Ratios. Evolution; International Journal of Organic	0.8 1.8 1.1	36 35 35
155 156 157	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041. Spite. Current Biology, 2006, 16, R662-R664. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution; International Journal of Organic Evolution, 2015, 69, 2371-2383. Stabilizing Selection and Variance in Fig Wasp Sex Ratios. Evolution; International Journal of Organic Evolution, 1998, 52, 475. The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis. Heredity, 2007,	0.8 1.8 1.1	36 35 35 34
155 156 157 158	The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid wasps. Journal of Evolutionary Biology, 2005, 18, 1029-1041. Spite. Current Biology, 2006, 16, R662-R664. Conflict of interest and signal interference lead to the breakdown of honest signaling. Evolution; International Journal of Organic Evolution, 2015, 69, 2371-2383. Stabilizing Selection and Variance in Fig Wasp Sex Ratios. Evolution; International Journal of Organic Evolution, 1998, 52, 475. The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis. Heredity, 2007, 98, 69-73. The cost and benefit of quorum sensingâ€controlled bacteriocin production in ⟨i⟩ Lactobacillus	0.8 1.8 1.1 1.1	36 35 35 34

#	Article	IF	Citations
163	The evolution of collective infectious units in viruses. Virus Research, 2019, 265, 94-101.	1.1	31
164	Altruism. Current Biology, 2006, 16, R482-R483.	1.8	30
165	Laboratory evolution of polyandry in the parasitoid wasp Nasonia vitripennis. Animal Behaviour, 2007, 74, 1147-1154.	0.8	30
166	Asymmetric larval competition in the parasitoid wasp Nasonia vitripennis: a role in sex allocation?. Behavioral Ecology and Sociobiology, 2007, 61, 1751-1758.	0.6	30
167	Payoff-based learning best explains the rate of decline in cooperation across 237 public-goods games. Nature Human Behaviour, 2021, 5, 1330-1338.	6.2	30
168	Seasonal variation in the sex allocation of a neotropical solitary bee. Behavioral Ecology, 1999, 10, 401-408.	1.0	29
169	Immune stress and facultative sex in a parasitic nematode. Journal of Evolutionary Biology, 2001, 14, 333-337.	0.8	29
170	Sex ratios in the rodent malaria parasite, Plasmodium chabaudi. Parasitology, 2003, 127, 419-425.	0.7	29
171	Sexual conflict in viscous populations: The effect of the timing of dispersal. Theoretical Population Biology, 2011, 80, 298-316.	0.5	29
172	Bacteriocins and the assembly of natural <i>Pseudomonas fluorescens</i> populations. Journal of Evolutionary Biology, 2017, 30, 352-360.	0.8	29
173	Beneficial coinfection can promote within-host viral diversity. Virus Evolution, 2018, 4, vey028.	2.2	29
174	Variable host quality, life-history invariants, and the reproductive strategy of a parasitoid wasp that produces single sex clutches. Behavioral Ecology, 2001, 12, 577-583.	1.0	28
175	ECOLOGY: Spite Among Siblings. Science, 2004, 305, 1413-1414.	6.0	28
176	The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology, 2007, 20, 577-587.	0.8	28
177	Lethal male–male combat in the parasitoid Melittobia acasta: are size and competitive environment important?. Animal Behaviour, 2007, 74, 1163-1169.	0.8	28
178	Competition between relatives and the evolution of dispersal in a parasitoid wasp. Journal of Evolutionary Biology, 2010, 23, 1374-1385.	0.8	28
179	ARE GREENBEARDS INTRAGENOMIC OUTLAWS?. Evolution; International Journal of Organic Evolution, 2011, 65, 2729-2742.	1.1	27
180	EFFECTS OF SPONTANEOUS MUTATION ACCUMULATION ON SEX RATIO TRAITS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2008, 62, 1921-1935.	1.1	26

#	Article	IF	Citations
181	Figs and fig wasps. Current Biology, 2005, 15, R978-R980.	1.8	25
182	Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees. American Naturalist, 2014, 184, 777-786.	1.0	25
183	Social learning and the demise of costly cooperation in humans. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170067.	1.2	25
184	Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nature Ecology and Evolution, 2021, 5, 1624-1636.	3.4	25
185	A Dimensionless Invariant for Relative Size at Sex Change in Animals: Explanation and Implications. American Naturalist, 2005, 165, 551-566.	1.0	23
186	Extremely female-biased primary sex ratio and precisely constant male production in a parasitoid wasp Melittobia. Animal Behaviour, 2009, 78, 515-523.	0.8	23
187	Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nature Plants, 2016, 2, 16063.	4.7	23
188	Sociomics: Using Omic Approaches to Understand Social Evolution. Trends in Genetics, 2017, 33, 408-419.	2.9	23
189	The costs and benefits of multicellular group formation in algae*. Evolution; International Journal of Organic Evolution, 2019, 73, 1296-1308.	1.1	23
190	Information use in space and time: sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Animal Behaviour, 2007, 73, 971-977.	0.8	22
191	The coevolution of cooperation and cognition in humans. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180723.	1.2	22
192	Adaptation is maintained by the parliament of genes. Nature Communications, 2019, 10, 5163.	5.8	22
193	Testing Small Clutch Size Models with Daphnia. American Naturalist, 2004, 163, 880-887.	1.0	21
194	Cooperation, clumping and the evolution of multicellularity. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151075.	1.2	21
195	Male morphology and dishonest signalling in a fig wasp. Animal Behaviour, 2009, 78, 147-153.	0.8	20
196	Modeling relatedness and demography in social evolution. Evolution Letters, 2018, 2, 260-271.	1.6	20
197	Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. Journal of Evolutionary Biology, 2006, 19, 1603-1611.	0.8	19
198	Evolution: What Is an Organism?. Current Biology, 2009, 19, R1080-R1082.	1.8	19

#	Article	IF	CITATIONS
199	Haplodiploidy and the Evolution of Eusociality: Worker Reproduction. American Naturalist, 2013, 182, 421-438.	1.0	19
200	Darwin's aliens. International Journal of Astrobiology, 2019, 18, 1-9.	0.9	19
201	Virginity in haplodiploid populations: a comparison of estimation methods. Ecological Entomology, 1998, 23, 207-210.	1.1	18
202	TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2003, 57, 1698-1703.	1.1	18
203	Can natural selection favour altruism between species?. Journal of Evolutionary Biology, 2013, 26, 1854-1865.	0.8	18
204	Parasitism and breeding system variation in North American populations of Daphnia pulex. Ecological Research, 2008, 23, 235-240.	0.7	17
205	Pyoverdin cheats fail to invade bacterial populations in stationary phase. Journal of Evolutionary Biology, 2016, 29, 1728-1736.	0.8	16
206	Restricting mutualistic partners to enforce trade reliance. Nature Communications, 2016, 7, 10322.	5.8	16
207	Transmission, relatedness, and the evolution of cooperative symbionts. Journal of Evolutionary Biology, 2019, 32, 1036-1045.	0.8	16
208	Evidence for strategic cooperation in humans. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170689.	1.2	15
209	The evolution of cooperation in simple molecular replicators. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171967.	1.2	15
210	Kin selection for cooperation in natural bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	15
211	Using sex ratios: why bother?. , 2002, , 399-413.		14
212	How host plant variability influences the advantages to learning: A theoretical model for oviposition behaviour in Lepidoptera. Journal of Theoretical Biology, 2008, 251, 404-410.	0.8	14
213	The evolution of cheating in viruses. Nature Communications, 2021, 12, 6928.	5.8	14
214	INEXPLICABLY FEMALE-BIASED SEX RATIOS IN <i>MELITTOBIA</i> Vi>WASPS. Evolution; International Journal of Organic Evolution, 2014, 68, 2709-2717.	1.1	13
215	An experimental study of strong reciprocity in bacteria. Biology Letters, 2014, 10, 20131069.	1.0	13
216	Evolution: Welcome to Symbiont Prison. Current Biology, 2016, 26, R66-R68.	1.8	13

#	Article	IF	CITATIONS
217	Sex ratios of malaria parasites and related protozoa. , 2002, , 314-332.		12
218	Haplodiploidy and the Evolution of Eusociality: Worker Revolution. American Naturalist, 2014, 184, 303-317.	1.0	12
219	The evolution of division of labour in structured and unstructured groups. ELife, 2021, 10, .	2.8	12
220	Virginity and the clutch size behavior of a parasitoid wasp where mothers mate their sons. Behavioral Ecology, 2010, 21, 730-738.	1.0	11
221	Fast-killing parasites can be favoured in spatially structured populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160096.	1.8	11
222	Crystal toxins and the volunteer's dilemma in bacteria. Journal of Evolutionary Biology, 2019, 32, 310-319.	0.8	11
223	Partial local mate competition and the sex ratio: A study on non-pollinating fig wasps. Journal of Evolutionary Biology, 1998, 11, 531.	0.8	11
224	SEX-RATIO ADJUSTMENT WHEN RELATIVES INTERACT: A TEST OF CONSTRAINTS ON ADAPTATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1211.	1.1	10
225	Conflict within cooperation. Current Biology, 2019, 29, R425-R426.	1.8	10
226	The social coevolution hypothesis for the origin of enzymatic cooperation. Nature Ecology and Evolution, 2020, 4, 132-137.	3.4	10
227	Correlates of Cooperation in a One-Shot High-Stakes Televised Prisoners' Dilemma. PLoS ONE, 2012, 7, e33344.	1.1	10
228	Relatedness and the evolution of mechanisms to divide labor in microorganisms. Ecology and Evolution, 2021, 11, 14475-14489.	0.8	10
229	Sex may need more than one. Journal of Evolutionary Biology, 1999, 12, 1053-1055.	0.8	9
230	Constraints on adaptation: explaining deviation from optimal sex ratio using artificial neural networks. Journal of Evolutionary Biology, 2010, 23, 1708-1719.	0.8	9
231	A solution to a sex ratio puzzle in Melittobia wasps. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024656118.	3.3	9
232	Toxoplasma gondii, sex and premature rejection. Trends in Parasitology, 2003, 19, 155-157.	1.5	8
233	Human behavioral ecology. Behavioral Ecology, 2013, 24, 1043-1045.	1.0	8
234	Altruism in a virus. Nature Microbiology, 2019, 4, 910-911.	5.9	8

#	Article	IF	CITATIONS
235	Cooperative interactions among females can lead to even more extraordinary sex ratios. Evolution Letters, 2021, 5, 370-384.	1.6	8
236	Paying for sex is not easy. Nature, 2000, 407, 962-962.	13.7	7
237	TESTING FOR EPISTASIS BETWEEN DELETERIOUS MUTATIONS IN A PARASITOID WASP. Evolution; International Journal of Organic Evolution, 2003, 57, 1698.	1.1	7
238	Functional amyloids promote retention of public goods in bacteria. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190709.	1.2	7
239	Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi. Ecology and Evolution, 2019, 9, 2425-2435.	0.8	7
240	The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms. Nature Communications, 2022, 13, 195.	5.8	7
241	Fighting in fig wasps: do males avoid killing brothers or do they never meet them?. Ecological Entomology, 2015, 40, 741-747.	1.1	6
242	Signalling of information that is neither cryptic nor private. Journal of Evolutionary Biology, 2017, 30, 806-813.	0.8	6
243	Molecular markers reveal reproductive strategies of nonâ€pollinating fig wasps. Ecological Entomology, 2017, 42, 689-696.	1.1	6
244	Communication in bacteria., 2008, , 11-32.		6
244	Communication in bacteria. , 2008, , 11-32. Wild, Gardner & West reply. Nature, 2010, 463, E9-E10.	13.7	5
		13.7	
245	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite.		5
245 246	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. Evolution Letters, 2020, 4, 65-72.	1.6	5
245 246 247	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. Evolution Letters, 2020, 4, 65-72. Learning in a Black Box. SSRN Electronic Journal, 0, , .	0.4	5 5 5
245 246 247 248	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. Evolution Letters, 2020, 4, 65-72. Learning in a Black Box. SSRN Electronic Journal, 0, , . Honest signaling and the double counting of inclusive fitness. Evolution Letters, 2019, 3, 428-433.	0.4	5 5 5
245 246 247 248	Wild, Gardner & West reply. Nature, 2010, 463, E9-E10. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. Evolution Letters, 2020, 4, 65-72. Learning in a Black Box. SSRN Electronic Journal, 0, , . Honest signaling and the double counting of inclusive fitness. Evolution Letters, 2019, 3, 428-433. What do humans maximize?. , 2012, , 23-49. Fertility Insurance and the Sex Ratios of Malaria and Related Hemospororin Blood Parasites. Journal	1.6 0.4 1.6	5 5 4 3

STUART WEST

#	Article	IF	CITATIONS
253	Sex change and relative body size in animals (reply). Nature, 2004, 428, 2-2.	13.7	2
254	Evolution: Revenge of the Clones!. Current Biology, 2005, 15, R547-R549.	1.8	2
255	Social Evolution: Cooperation by Conflict. Current Biology, 2006, 16, R365-R367.	1.8	2
256	Kin Selection in the RNA World. Life, 2017, 7, 53.	1.1	2
257	Reproductive strategies of diurnal muttillid wasps (Hymenoptera: Mutillidae). Contributions in Science, 2018, 526, 181-188.	0.3	2
258	Social Evolution: Evolving Sex Ratios. Current Biology, 2011, 21, R992-R994.	1.8	0
259	HANDICAPS ARE UNNECESSARY FOR HUMAN COMMUNICATION. , 2014, , .		0
260	Green Blobs and Predatory Beasts: Clues to Multicellularity. Frontiers for Young Minds, 0, 7, .	0.8	0
261	Playing god with evolution. Nature Ecology and Evolution, 2022, , .	3.4	O