
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8210324/publications.pdf Version: 2024-02-01

ΥλάλΙ Ιλεεà 🔿

#	Article	IF	CITATIONS
1	GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. Astrophysical Journal, 2017, 844, 48.	4.5	248
2	BUDHIES II: a phase-space view of H i gas stripping and star formation quenching in cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1715-1728.	4.4	183
3	JELLYFISH GALAXY CANDIDATES AT LOW REDSHIFT. Astronomical Journal, 2016, 151, 78.	4.7	136
4	Phase-space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss. Astrophysical Journal, 2017, 843, 128.	4.5	132
5	GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4753-4764.	4.4	123
6	Enhanced Star Formation in Both Disks and Ram-pressure-stripped Tails of GASP Jellyfish Galaxies. Astrophysical Journal Letters, 2018, 866, L25.	8.3	115
7	Ram-pressure feeding of supermassive black holes. Nature, 2017, 548, 304-309.	27.8	106
8	The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2019, 489, 241-267.	4.4	92
9	HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT $z = 0.376$. Astrophysical Journal Letters, 2016, 824, L1.	8.3	89
10	BUDHIES – III: the fate of H i and the quenching of galaxies in evolving environments. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1202-1221.	4.4	88
11	A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies. Astrophysical Journal, 2017, 838, 81.	4.5	88
12	GASP XIII. Star formation in gas outside galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4466-4502.	4.4	83
13	GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201. Astrophysical Journal, 2017, 844, 49.	4.5	76
14	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66
15	GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204. Astrophysical Journal, 2017, 846, 27.	4.5	64
16	GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at zÂâ^1⁄4Â0.05: Does Ram Pressure Promote Molecular Gas Formation?. Astrophysical Journal, 2020, 889, 9.	4.5	58
17	GASP – X. APEX observations of molecular gas in the discs and in the tails of ram-pressure stripped galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2508-2520.	4.4	57
18	GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle. Astrophysical Journal, 2019, 887, 155.	4.5	52

#	Article	IF	CITATIONS
19	GASP – XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4580-4591.	4.4	50
20	SPECTROSCOPY OF BRIGHT QUEST RR LYRAE STARS: VELOCITY SUBSTRUCTURES TOWARD VIRGO. Astronomical Journal, 2008, 136, 1645-1657.	4.7	49
21	GASP. XXI. Star Formation Rates in the Tails of Galaxies Undergoing Ram Pressure Stripping. Astrophysical Journal, 2020, 899, 13.	4.5	49
22	THE GEOMETRY OF MASS OUTFLOWS AND FUELING FLOWS IN THE SEYFERT 2 GALAXY MRK 3. Astronomical Journal, 2010, 139, 871-877.	4.7	43
23	OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe. Astrophysical Journal, 2017, 838, 148.	4.5	43
24	UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4126-4135.	4.4	42
25	GASP. XV. A MUSE view of extreme ram-pressure stripping along the line of sight: physical properties of the jellyfish galaxy JO201. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1157-1170.	4.4	39
26	GAS RESERVOIRS AND STAR FORMATION IN A FORMING GALAXY CLUSTER AT <i>z</i> â<0.2. Astrophysical Journal Letters, 2012, 756, L28.	8.3	38
27	GASP XVIII: star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3102-3111.	4.4	37
28	The effect of the environment on the gas kinematics and the structure of distant galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1996-2019.	4.4	36
29	BUDHIES I: characterizing the environments in and around two clusters at zâ‹0.2. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2111-2125.	4.4	35
30	GASP – XII. The variety of physical processes occurring in a single galaxy group in formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3152-3169.	4.4	35
31	GASP – XIX. ACN and their outflows at the centre of jellyfish galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 486-503.	4.4	35
32	GASP XXIV. The History of Abruptly Quenched Galaxies in Clusters. Astrophysical Journal, 2020, 892, 146.	4.5	35
33	GASP XXX. The Spatially Resolved SFR–Mass Relation in Stripping Galaxies in the Local Universe. Astrophysical Journal, 2020, 899, 98.	4.5	35
34	GASP – XVI. Does cosmic web enhancement turn on star formation in galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2278-2295.	4.4	34
35	Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters. Astrophysical Journal, 2022, 927, 130.	4.5	34
36	Early Science with the Large Millimeter Telescope: COOL BUDHIES I – a pilot study of molecular and atomic gas at <i>z</i> ≃ 0.2. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3287-3306.	4.4	33

#	Article	IF	CITATIONS
37	The colour-magnitude relation of elliptical and lenticular galaxies in the ESO Distant Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2011, 410, 280-292.	4.4	30
38	Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670. Astrophysical Journal Letters, 2017, 840, L7.	8.3	29
39	GASP XXIX – unwinding the arms of spiral galaxies via ram-pressure stripping. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1285-1312.	4.4	29
40	GASP XXV: neutral hydrogen gas in the striking jellyfish galaxy JO204. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5029-5043.	4.4	28
41	GASP – XX. From the loose spatially resolved to the tight global SFR–mass relation in local spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1597-1617.	4.4	27
42	Formation of S0s in extreme environments I: clues from kinematics and stellar populations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2955-2972.	4.4	27
43	GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201. Astrophysical Journal, 2021, 911, 144.	4.5	24
44	GASP. XXXIII. The Ability of Spatially Resolved Data to Distinguish among the Different Physical Mechanisms Affecting Galaxies in Low-density Environments. Astrophysical Journal, 2021, 914, 27.	4.5	21
45	GASP. VII. Signs of Gas Inflow onto a Lopsided Galaxy. Astrophysical Journal, 2018, 852, 94.	4.5	19
46	GASP XXVII: Gas-phase Metallicity Scaling Relations in Disk Galaxies with and without Ram Pressure Stripping. Astrophysical Journal, 2020, 895, 106.	4.5	19
47	Galaxy pre-processing in substructures around z â^1⁄4 0.4 galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2328-2350.	4.4	18
48	An environmental dependence of the physical and structural properties in the Hydra cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1323-1339.	4.4	17
49	Ionized gas discs in elliptical and S0 galaxies at z < 1. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3491-3502.	4.4	16
50	Determining the Halo Mass Scale Where Galaxies Lose Their Gas [*] . Astrophysical Journal, 2017, 850, 181.	4.5	16
51	The time delay between star formation quenching and morphological transformation of galaxies in clusters: a phase–space view of EDisCS. Monthly Notices of the Royal Astronomical Society, 2019, 486, 868-884.	4.4	16
52	The Relevance of Ram Pressure Stripping for the Evolution of Blue Cluster Galaxies as Seen at Optical Wavelengths. Astrophysical Journal, 2022, 927, 91.	4.5	16
53	BUDHiES IV: Deep 21-cm neutral Hydrogen, optical, and UV imaging data of Abell 963 and Abell 2192 at z â‰f 0.2. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3531-3552.	4.4	15
54	Formation of S0s in extreme environments II: The star-formation histories of bulges, discs, and lenses. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4193-4212.	4.4	15

#	Article	IF	CITATIONS
55	RECENT GALAXY MERGERS AND RESIDUAL STAR FORMATION OF RED SEQUENCE GALAXIES IN GALAXY CLUSTERS. Astrophysical Journal, 2016, 827, 32.	4.5	15
56	Two striking head–tail galaxies in the galaxy cluster IIZW108: insights into transition to turbulence, magnetic fields, and particle re-acceleration. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5326-5344.	4.4	14
57	GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at zÂâ^¼Â0.05. Astrophysical Journal, 2017, 850, 163.	4.5	10
58	Consequences of the external field effect for MOND disc galaxies in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5362-5379.	4.4	9
59	The dynamical state of Abell 2399: a bullet-like cluster. Monthly Notices of the Royal Astronomical Society, 2020, 498, 835-849.	4.4	9
60	Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories. Physical Review X, 2017, 7, .	8.9	6
61	H α-based star formation rates in and around <i>z</i> â^¼ 0.5 EDisCS clusters. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5382-5398.	4.4	4
62	Raman-scattered laser guide-star photons to monitor the scatter of astronomical telescope mirrors. Astronomy and Astrophysics, 2018, 618, L7.	5.1	3
63	Ionized gas kinematics of cluster AGN at zÂâ^¼ 0.8 with KMOS. Monthly Notices of the Royal Astronomical Society, 2021, 506, 385-395.	4.4	1
64	Early-type galaxy formation: understanding the role of the environment. Proceedings of the International Astronomical Union, 2014, 10, 291-292.	0.0	0
65	The role of environment on quenching, star formation and AGN activity. Proceedings of the International Astronomical Union, 2019, 15, 108-116.	0.0	0
66	Chilean astronomy and climate change. Nature Astronomy, 2022, 6, 306-307.	10.1	0