Susan A Gerbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209638/publications.pdf Version: 2024-02-01

SUSAN & CEDRI

#	Article	IF	CITATIONS
1	Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma, 1970, 29, 268-290.	2.2	271
2	Xenopus laevis28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Research, 1984, 12, 6197-6220.	14.5	207
3	Sequence analysis of 28S ribosomal DNA from the amphibianXenopus laevis. Nucleic Acids Research, 1983, 11, 7795-7817.	14.5	170
4	Discrete Start Sites for DNA Synthesis in the Yeast ARS1 Origin. Science, 1998, 279, 95-98.	12.6	144
5	The nucleolus: a site of ribonucleoprotein maturation. Current Opinion in Cell Biology, 2003, 15, 318-325.	5.4	112
6	Chromosomal ARS1 Has a Single Leading Strand Start Site. Molecular Cell, 1999, 3, 477-486.	9.7	106
7	Nucleotide sequence determination and secondary structure ofXenopusU3 snRNA. Nucleic Acids Research, 1988, 16, 2127-2148.	14.5	91
8	Replication Initiation Point Mapping. Methods, 1997, 13, 271-280.	3.8	89
9	Origin recognition complex binding to a metazoan replication origin. Current Biology, 2001, 11, 1427-1431.	3.9	71
10	Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and C-quadruplex motifs around a subset of human replication origins. Genome Research, 2015, 25, 725-735.	5.5	70
11	U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 1347-1363.	4.2	66
12	Transient Nucleolar Localization Of U6 Small Nuclear RNA In <i>Xenopus Laevis</i> Oocytes. Molecular Biology of the Cell, 2000, 11, 2419-2428.	2.1	65
13	Processing of the large rRNA precursor: two proposed categories of RNA-RNA interactions in eukaryotes. Journal of Molecular Evolution, 1984, 20, 362-367.	1.8	62
14	Developmental Changes in the Sciara II/9A Initiation Zone for DNA Replication. Molecular and Cellular Biology, 2002, 22, 8426-8437.	2.3	61
15	rRNA proceesing: removal of only nineteen bas at the gap between 28Sα and 28Sβ rRNAs inSciara coprophila. Nucleic Acids Research, 1985, 13, 3581-3597.	14.5	60
16	Localization and characterization of the ribosomal RNA cistrons in Sciara coprophila. Journal of Molecular Biology, 1971, 58, 499-511.	4.2	59
17	DNA replication and chromatin. Current Opinion in Genetics and Development, 2002, 12, 243-248.	3.3	56
18	All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA. Molecular Biology of the Cell, 2002, 13, 3123-3137.	2.1	49

SUSAN A GERBI

#	Article	IF	CITATIONS
19	Small nucleolar RNA. Biochemistry and Cell Biology, 1995, 73, 845-858.	2.0	48
20	Xenopus U3 snoRNA GAC-Box A′ and Box A Sequences Play Distinct Functional Roles in rRNA Processing. Molecular and Cellular Biology, 2001, 21, 6210-6221.	2.3	48
21	Box H and Box ACA Are Nucleolar Localization Elements of U17 Small Nucleolar RNA. Molecular Biology of the Cell, 1999, 10, 3877-3890.	2.1	46
22	Developmental Progression of DNA Puffs in Sciara coprophila: Amplification and Transcription. Developmental Biology, 1993, 160, 73-84.	2.0	41
23	Nucleolar Localization Elements of Xenopus laevis U3 Small Nucleolar RNA. Molecular Biology of the Cell, 1998, 9, 2973-2985.	2.1	40
24	The spacing between functional cis-elements of U3 snoRNA is critical for rRNA processing. Journal of Molecular Biology, 2000, 300, 57-74.	4.2	40
25	Initiation of DNA replication in multicellular eukaryotes. Journal of Structural Biology, 2002, 140, 17-30.	2.8	40
26	Making ends meet: targeted integration of DNA fragments by genome editing. Chromosoma, 2018, 127, 405-420.	2.2	35
27	Molecular characterization of DNA puff II/9a genes in Sciara coprophila. Journal of Molecular Biology, 1989, 210, 531-540.	4.2	34
28	Isolation and characterization of ribosomal DNA variants from Sciara coprophila. Journal of Molecular Biology, 1989, 210, 1-13.	4.2	33
29	Nucleolar localization elements in U8 snoRNA differ from sequences required for rRNA processing. Rna, 1998, 4, 789-800.	3.5	33
30	An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA. Nucleic Acids Research, 2005, 33, 4995-5005.	14.5	30
31	Interdigitated repeated sequences in bovine satellite DNA. Nature, 1975, 253, 367-370.	27.8	29
32	Localization of ribosomal DNA within the proximal X heterochromatin of Sciara coprophila (Diptera,) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf !
33	Universal and domain-specific sequences in 23S–28S ribosomal RNA identified by computational phylogenetics. Rna, 2015, 21, 1719-1730.	3.5	29
34	Spermatogenesis in Sciara coprophila. Chromosoma, 1981, 83, 1-18.	2.2	28
35	FURTHER STUDIES ON THE RIBOSOMAL RNA CISTRONS OF SCIARA COPROPHILA (DIPTERA). Genetics, 1976, 83, 81-90.	2.9	26
36	The hunt for origins of DNA replication in multicellular eukaryotes. F1000prime Reports, 2015, 7, 30.	5.9	25

SUSAN A GERBI

#	Article	IF	CITATIONS
37	In an era of scientific opportunity, are there opportunities for biomedical scientists?. FASEB Journal, 2003, 17, 2169-2173.	0.5	24
38	Biomedical science postdocs: an end to the era of expansion. FASEB Journal, 2016, 30, 41-44.	0.5	23
39	Spermatogenesis in Sciara coprophila. Chromosoma, 1981, 83, 19-27.	2.2	18
40	Delocalization of some small nucleolar RNPs after actinomycin D treatment to deplete early pre-rRNAs. Chromosoma, 1997, 105, 506-514.	2.2	18
41	Foreign postdocs: the changing face of biomedical science in the U.S FASEB Journal, 2005, 19, 1938-1942.	0.5	18
42	Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Developmental Biology, 2006, 299, 151-163.	2.0	18
43	U3 snoRNA may recycle through different compartments of the nucleolus. Chromosoma, 1997, 105, 401-406.	2.2	17
44	Education and Employment Patterns of U.S. Ph.D.'s in the Biomedical Sciences. FASEB Journal, 1998, 12, 139-148.	0.5	17
45	Maintenance of the DNA puff expanded state is independent of active replication and transcription. Chromosoma, 2001, 110, 186-196.	2.2	17
46	A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara. Chromosoma, 2002, 111, 291-303.	2.2	17
47	High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing. BMC Genomics, 2021, 22, 643.	2.8	17
48	Gene-rich germline-restricted chromosomes in black-winged fungus gnats evolved through hybridization. PLoS Biology, 2022, 20, e3001559.	5.6	15
49	U4 snRNA nucleolar localization requires the NHPX/15.5-kD protein binding site but not Sm protein or U6 snRNA association. Journal of Cell Biology, 2003, 162, 821-832.	5.2	14
50	Whole Organism Genome Editing: Targeted Large DNA Insertion via ObLiGaRe Nonhomologous End-Joining in Vivo Capture. G3: Genes, Genomes, Genetics, 2015, 5, 1843-1847.	1.8	14
51	Helen Crouse (1914–2006): Imprinting and Chromosome Behavior. Genetics, 2007, 175, 1-6.	2.9	14
52	Isolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila. Chromosoma, 2013, 122, 103-119.	2.2	11
53	Mapping Origins of DNA Replication in Eukaryotes. , 2005, 296, 167-180.		8
54	Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara). Chromosome Research, 2022, 30, 273-288.	2.2	8

SUSAN A GERBI

#	Article	IF	CITATIONS
55	The nucleolus: then and now. Chromosoma, 1997, 105, 385-387.	2.2	7
56	EDUCATION: Workforce Alternatives to Graduate Students?. Science, 2001, 292, 1489-1490.	12.6	7
57	The ecdysone receptor (ScEcR-A) binds DNA puffs at the start of DNA amplification in Sciara coprophila. Chromosome Research, 2013, 21, 345-360.	2.2	6
58	U3 snoRNA may recycle through different compartments of the nucleolus. Chromosoma, 1997, 105, 401-406.	2.2	6
59	Beginning at the end: DNA replication within the telomere. Journal of Cell Biology, 2015, 210, 177-179.	5.2	5
60	Anatomy and evolution of a DNA replication origin. Chromosoma, 2021, 130, 199-214.	2.2	3
61	Delocalization of some small nucleolar RNPs after actinomycin D treatment to deplete early pre-rRNAs. Chromosoma, 1997, 105, 506-514.	2.2	3
62	Development of Transformation for Genome Editing of an Emerging Model Organism. Genes, 2022, 13, 1108.	2.4	3
63	Joseph G. Gall. Journal of Cell Science, 2003, 116, 3849-3850.	2.0	2
64	The nucleolus: then and now. Chromosoma, 1997, 105, 385-387.	2.2	2
65	A remarkable career in science—Joseph G. Gall. Chromosome Research, 2013, 21, 339-343.	2.2	1
66	William R. Brinkley: A giant in biomedical research and public policy. Journal of Cell Biology, 2021, 220, .	5.2	1
67	Bundling up DNA. ELife, 2018, 7, .	6.0	1
68	Eukaryotic DNA Replication. Chromosome Research, 1999, 7, 81-82.	2.2	0
69	The path from student to mentor and from chromosomes to replication to genomics. Molecular Biology of the Cell, 2016, 27, 3200-3202.	2.1	0
70	Treasure Your Exceptions: An Interview with 2017 George Beadle Award Recipient Susan A. Gerbi. Genetics, 2017, 207, 1215-1217.	2.9	0