
## David C Wraith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209064/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases✰. Immunology<br>Letters, 2022, 244, 12-18.                                                                                                 | 2.5  | 2         |
| 2  | Therapies for Long COVID in non-hospitalised individuals: from symptoms, patient-reported outcomes and immunology to targeted therapies (The TLC Study). BMJ Open, 2022, 12, e060413.                                           | 1.9  | 21        |
| 3  | Peptide allergenâ€specific immunotherapy for allergic airway diseases— State of the art. Clinical and Experimental Allergy, 2021, 51, 751-769.                                                                                  | 2.9  | 15        |
| 4  | A LAT-Based Signaling Complex in the Immunological Synapse as Determined with Live Cell Imaging Is<br>Less Stable in T Cells with Regulatory Capability. Cells, 2021, 10, 418.                                                  | 4.1  | 0         |
| 5  | SARS oVâ€2â€specific IgG1/IgG3 but not IgM in children with Pediatric Inflammatory Multiâ€System<br>Syndrome. Pediatric Allergy and Immunology, 2021, 32, 1125-1129.                                                            | 2.6  | 13        |
| 6  | The Mechanism of Action of Antigen Processing Independent T Cell Epitopes Designed for<br>Immunotherapy of Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 654201.                                                      | 4.8  | 6         |
| 7  | Development of a highâ€sensitivity ELISA detecting IgG, IgA and IgM antibodies to the SARSâ€CoVâ€⊋ spike glycoprotein in serum and saliva. Immunology, 2021, 164, 135-147.                                                      | 4.4  | 35        |
| 8  | Establishing the prevalence of common tissue-specific autoantibodies following severe acute<br>respiratory syndrome coronavirus 2 infection. Clinical and Experimental Immunology, 2021, 205,<br>99-105.                        | 2.6  | 52        |
| 9  | Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases.<br>Current Opinion in Immunology, 2021, 70, 75-81.                                                                                 | 5.5  | 14        |
| 10 | Preclinical models of arthritis for studying immunotherapy and immune tolerance. Annals of the<br>Rheumatic Diseases, 2021, 80, 1268-1277.                                                                                      | 0.9  | 20        |
| 11 | Antigen and checkpoint receptor engagement recalibrates TÂcell receptor signal strength. Immunity,<br>2021, 54, 2481-2496.e6.                                                                                                   | 14.3 | 33        |
| 12 | Serological responses to SARS-CoV-2 following non-hospitalised infection: clinical and<br>ethnodemographic features associated with the magnitude of the antibody response. BMJ Open<br>Respiratory Research, 2021, 8, e000872. | 3.0  | 25        |
| 13 | Induction of Tolerance to Therapeutic Proteins With Antigen-Processing Independent T Cell Epitopes:<br>Controlling Immune Responses to Biologics. Frontiers in Immunology, 2021, 12, 742695.                                    | 4.8  | 6         |
| 14 | Antigen-specific immunotherapy with apitopes suppresses generation of FVIII inhibitor antibodies in HLA-transgenic mice. Blood Advances, 2021, , .                                                                              | 5.2  | 4         |
| 15 | Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Frontiers in<br>Immunology, 2020, 11, 1586.                                                                                                          | 4.8  | 21        |
| 16 | Autoantigens in rheumatoid arthritis and the potential for antigen-specific tolerising immunotherapy.<br>Lancet Rheumatology, The, 2020, 2, e712-e723.                                                                          | 3.9  | 8         |
| 17 | SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: a cross-sectional study. Thorax, 2020, 75, 1089-1094.                                                                                          | 5.6  | 234       |
| 18 | Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Reports, 2020, 33, 108328.                                                                                     | 6.4  | 50        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chromatin Priming Renders T Cell Tolerance-Associated Genes Sensitive to Activation below theÂSignaling Threshold for Immune Response Genes. Cell Reports, 2020, 31, 107748.                                           | 6.4  | 21        |
| 20 | Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A<br>Phase I Study. Thyroid, 2019, 29, 1003-1011.                                                                        | 4.5  | 72        |
| 21 | Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. Neurology, 2018, 90, e955-e962.                                                                                                    | 1.1  | 66        |
| 22 | Designing antigens for the prevention and treatment of autoimmune diseases. Current Opinion in Chemical Engineering, 2018, 19, 35-42.                                                                                  | 7.8  | 15        |
| 23 | Immunotherapy With Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice.<br>Endocrinology, 2018, 159, 3446-3457.                                                                              | 2.8  | 35        |
| 24 | Variant proteins stimulate more IgM+ GC B-cells revealing a mechanism of cross-reactive recognition by antibody memory. ELife, 2018, 7, .                                                                              | 6.0  | 16        |
| 25 | Myeloidâ€derived suppressor cells mediate tolerance induction in autoimmune disease. Immunology, 2017, 151, 26-42.                                                                                                     | 4.4  | 32        |
| 26 | A humanized HLA-DR4 mouse model for autoimmune myocarditis. Journal of Molecular and Cellular<br>Cardiology, 2017, 107, 22-26.                                                                                         | 1.9  | 10        |
| 27 | IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Scientific Reports, 2017, 7, 11315.                                                                                              | 3.3  | 82        |
| 28 | Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity, 2017, 47, 875-889.e10.                                                                                                          | 14.3 | 181       |
| 29 | The Future of Immunotherapy: A 20-Year Perspective. Frontiers in Immunology, 2017, 8, 1668.                                                                                                                            | 4.8  | 76        |
| 30 | Protein kinase C theta is required for efficient induction of IL-10-secreting T cells. PLoS ONE, 2017, 12, e0171547.                                                                                                   | 2.5  | 8         |
| 31 | PKCÎ, links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton.<br>ELife, 2017, 6, .                                                                                           | 6.0  | 18        |
| 32 | Tr1-Like T Cells – An Enigmatic Regulatory T Cell Lineage. Frontiers in Immunology, 2016, 7, 355.                                                                                                                      | 4.8  | 59        |
| 33 | CNS infection safety signal of RTS,S/AS01 and possible association with rabies vaccine. Lancet, The, 2016, 387, 1376.                                                                                                  | 13.7 | 10        |
| 34 | Antigen-specific immunotherapy. Nature, 2016, 530, 422-423.                                                                                                                                                            | 27.8 | 35        |
| 35 | Glycogen synthase kinaseâ€3 controls ILâ€10 expression in CD4 <sup>+</sup> effector Tâ€cell subsets<br>through epigenetic modification of the ILâ€10 promoter. European Journal of Immunology, 2015, 45,<br>1103-1115. | 2.9  | 44        |
| 36 | Extraâ€ŧhymically induced <scp>T</scp> regulatory cell subsets: the optimal target for antigenâ€specific<br>immunotherapy. Immunology, 2015, 145, 171-181.                                                             | 4.4  | 25        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.                                                                   | 3.7  | 145       |
| 38 | Preclinical development and first-in-human study of ATX-MS-1467 for immunotherapy of MS.<br>Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e93.                                                                                        | 6.0  | 70        |
| 39 | CTLA-4 Modulates the Differentiation of Inducible Foxp3+ Treg Cells but IL-10 Mediates Their Function in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2014, 9, e108023.                                                                    | 2.5  | 18        |
| 40 | Blockade of LFA-1 augments in vitro differentiation of antigen-induced Foxp3+ Treg cells. Journal of<br>Immunological Methods, 2014, 414, 58-64.                                                                                                   | 1.4  | 15        |
| 41 | New inhibitory signaling by CTLA-4. Nature Immunology, 2014, 15, 408-409.                                                                                                                                                                          | 14.5 | 20        |
| 42 | Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nature<br>Communications, 2014, 5, 4741.                                                                                                             | 12.8 | 147       |
| 43 | TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. Journal of<br>Hepatology, 2014, 61, 594-599.                                                                                                             | 3.7  | 185       |
| 44 | Epigenetic modification of the PD-1 (Pdcd1) promoter in effector CD4+ T cells tolerized by peptide immunotherapy. ELife, 2014, 3, .                                                                                                                | 6.0  | 52        |
| 45 | CTLA-4 controls the thymic development of both conventional and regulatory T cells through modulation of the TCR repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E221-30.                  | 7.1  | 43        |
| 46 | Regulation of Adaptive Immunity; The Role of Interleukin-10. Frontiers in Immunology, 2013, 4, 129.                                                                                                                                                | 4.8  | 251       |
| 47 | Modification of the FoxP3 Transcription Factor Principally Affects Inducible T Regulatory Cells in a<br>Model of Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e61334.                                                             | 2.5  | 10        |
| 48 | 2 Are mesenchymal stem cells immune privileged?. , 2013, , 17-36.                                                                                                                                                                                  |      | 0         |
| 49 | CD4+ T-cell epitopes associated with antibody responses after intravenously and subcutaneously applied human FVIII in humanized hemophilic E17 HLA-DRB1*1501 mice. Blood, 2012, 119, 4073-4082.                                                    | 1.4  | 62        |
| 50 | The adaptive immune system in diseases of the central nervous system. Journal of Clinical Investigation, 2012, 122, 1172-1179.                                                                                                                     | 8.2  | 79        |
| 51 | Human Mesenchymal Stem Cells Infiltrate the Spinal Cord, Reduce Demyelination, and Localize to<br>White Matter Lesions in Experimental Autoimmune Encephalomyelitis. Journal of Neuropathology and<br>Experimental Neurology, 2010, 69, 1087-1095. | 1.7  | 85        |
| 52 | A hazardous vapour trail from abattoir to neuropathy clinic. Lancet Neurology, The, 2010, 9, 22-24.                                                                                                                                                | 10.2 | 0         |
| 53 | Antigenic strength controls the generation of antigenâ€specific ILâ€10â€secreting T regulatory cells.<br>European Journal of Immunology, 2010, 40, 1386-1395.                                                                                      | 2.9  | 54        |
| 54 | Antigen-specific immunotherapy of autoimmune and allergic diseases. Current Opinion in Immunology, 2010, 22, 609-615.                                                                                                                              | 5.5  | 118       |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Comment on "Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates<br>Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells― Journal of Immunology, 2010,<br>185, 7129-7129.          | 0.8  | 79        |
| 56 | Isolation and characterization of human interleukin-10–secreting T cells from peripheral blood.<br>Human Immunology, 2010, 71, 225-234.                                                                                        | 2.4  | 11        |
| 57 | Enhanced selection of FoxP3 <sup>+</sup> T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3306-3311. | 7.1  | 48        |
| 58 | Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10–secreting Th1 cells. Journal of Experimental Medicine, 2009, 206, 1755-1767.                                             | 8.5  | 145       |
| 59 | A role for galanin in human and experimental inflammatory demyelination. Proceedings of the<br>National Academy of Sciences of the United States of America, 2009, 106, 15466-15471.                                           | 7.1  | 44        |
| 60 | Therapeutic peptide vaccines for treatment of autoimmune diseases. Immunology Letters, 2009, 122, 134-136.                                                                                                                     | 2.5  | 42        |
| 61 | The role of CTLA-4 in immune regulation. Immunology Letters, 2008, 115, 73-74.                                                                                                                                                 | 2.5  | 17        |
| 62 | Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neuroscience Letters, 2008, 448, 71-73.                                       | 2.1  | 116       |
| 63 | Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. Journal of Experimental Medicine, 2008, 205, 2295-2307.                              | 8.5  | 105       |
| 64 | Cutting Edge: Th1 Cells Facilitate the Entry of Th17 Cells to the Central Nervous System during<br>Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 181, 3750-3754.                                     | 0.8  | 289       |
| 65 | Stem Cell Immunology. , 2008, , 199-213.                                                                                                                                                                                       |      | 2         |
| 66 | Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune<br>neuroinflammation by inducing antigen-specific Tregs. Journal of Clinical Investigation, 2008, 118,<br>3403-10.                  | 8.2  | 142       |
| 67 | Human CD4+CD25+ regulatory T Cells Exhibit Dual Mechanisms of Action in Suppressing in Vitro<br>Alloreactivity. Blood, 2008, 112, 2582-2582.                                                                                   | 1.4  | 0         |
| 68 | CD86 Has Sustained Costimulatory Effects on CD8 T Cells. Journal of Immunology, 2007, 179, 5936-5946.                                                                                                                          | 0.8  | 18        |
| 69 | Peptide-based therapy for autoimmune diseases. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 35-40.                                                                                                                   | 0.5  | 2         |
| 70 | Avidity and the Art of Self Non-Self Discrimination. Immunity, 2006, 25, 191-193.                                                                                                                                              | 14.3 | 5         |
| 71 | IL-10 is essential for disease protection following intranasal peptide administration in the C57BL/6 model of EAE. Journal of Neuroimmunology, 2006, 178, 1-8.                                                                 | 2.3  | 70        |
| 72 | Persistent antigenic stimulation alters the transcription program in T cells, resulting in<br>antigen-specific tolerance. European Journal of Immunology, 2006, 36, 1374-1385.                                                 | 2.9  | 61        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Anti-cytokine vaccines and the immunotherapy of autoimmune diseases. European Journal of<br>Immunology, 2006, 36, 2844-2848.                                                                                           | 2.9  | 19        |
| 74 | Natural and Induced Regulatory T Cells: Targets for Immunotherapy of Autoimmune Disease and Allergy. Inflammation and Allergy: Drug Targets, 2006, 5, 141-148.                                                         | 1.8  | 3         |
| 75 | Experimental autoimmune encephalomyelitis in mice expressing the autoantigen MBP1–10 covalently bound to the MHC class II molecule I-Au. International Immunology, 2006, 18, 151-162.                                  | 4.0  | 5         |
| 76 | Combinations of CD45 Isoforms Are Crucial for Immune Function and Disease. Journal of Immunology, 2006, 176, 3417-3425.                                                                                                | 0.8  | 41        |
| 77 | Antigen-Induced IL-10+ Regulatory T Cells Are Independent of CD25+ Regulatory Cells for Their<br>Growth, Differentiation, and Function. Journal of Immunology, 2006, 176, 5329-5337.                                   | 0.8  | 29        |
| 78 | Human CD4+CD25+CD127â^' T Cells Show Potent Dose-Dependent Inhibition of Allogeneic DC-Driven MLRs Blood, 2006, 108, 5172-5172.                                                                                        | 1.4  | 0         |
| 79 | Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nature Medicine, 2005, 11, S69-S76.                                                                                                           | 30.7 | 290       |
| 80 | IL-2 Overcomes the Unresponsiveness but Fails to Reverse the Regulatory Function of Antigen-Induced<br>T Regulatory Cells. Journal of Immunology, 2005, 174, 310-319.                                                  | 0.8  | 28        |
| 81 | IL-10-Secreting Regulatory T Cells Do Not Express Foxp3 but Have Comparable Regulatory Function to<br>Naturally Occurring CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2004, 172, 5986-5993.                   | 0.8  | 583       |
| 82 | Activation thresholds determine susceptibility to peptide-induced tolerance in a heterogeneous myelin-reactive T cell repertoire. Journal of Neuroimmunology, 2004, 156, 96-106.                                       | 2.3  | 16        |
| 83 | Natural and Induced Regulatory T Cells. Annals of the New York Academy of Sciences, 2004, 1029, 180-192.                                                                                                               | 3.8  | 26        |
| 84 | Regulatory CD4+ T cells and the control of autoimmune disease. Current Opinion in Immunology, 2004, 16, 695-701.                                                                                                       | 5.5  | 107       |
| 85 | T-cell receptor degeneracy: the dog that did not barkAdaptation of the self-reactive T-cell response to<br>limit autoimmune disease. Molecular Immunology, 2004, 40, 997-1002.                                         | 2.2  | 4         |
| 86 | Vaccination and autoimmune disease: what is the evidence?. Lancet, The, 2003, 362, 1659-1666.                                                                                                                          | 13.7 | 307       |
| 87 | Role of interleukin-10 in the induction and function of natural and antigen-induced regulatory T cells. Journal of Autoimmunity, 2003, 20, 273-275.                                                                    | 6.5  | 24        |
| 88 | Differential activation of signal transducer and activator of transcription (STAT)3 and STAT5 and induction of suppressors of cytokine signalling in Th1 and Th2 cells. International Immunology, 2003, 15, 1309-1317. | 4.0  | 23        |
| 89 | Role for IL-10 in Suppression Mediated by Peptide-Induced Regulatory T Cells In Vivo. Journal of<br>Immunology, 2003, 170, 1240-1248.                                                                                  | 0.8  | 233       |
| 90 | Peptides containing a dominant T-cell epitope from red cell band 3 have in vivo immunomodulatory properties in NZB mice with autoimmune hemolytic anemia. Blood, 2003, 102, 3800-3806.                                 | 1.4  | 42        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Characterization of the Dominant Autoreactive T-cell Epitope in Spontaneous Autoimmune Haemolytic<br>Anaemia of the NZB Mouse. Journal of Autoimmunity, 2002, 18, 149-157.                                                      | 6.5  | 9         |
| 92  | Cross-reactivity and T-cell Receptor Antagonism of Myelin Basic Protein-reactive T cells is Modulated by the Activation State of the Antigen Presenting Cell. Journal of Autoimmunity, 2002, 19, 183-193.                       | 6.5  | 10        |
| 93  | Intranasal peptide-induced peripheral tolerance: the role of IL-10 in regulatory T cell function within the context of experimental autoimmune encephalomyelitis. Veterinary Immunology and Immunopathology, 2002, 87, 357-372. | 1.2  | 33        |
| 94  | Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunology, 2002, 3, 169-174.                                                                                | 14.5 | 200       |
| 95  | Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nature Immunology, 2002, 3,<br>175-181.                                                                                                                 | 14.5 | 97        |
| 96  | Selection and fine-tuning of the autoimmune T-cell repertoire. Nature Reviews Immunology, 2002, 2, 487-498.                                                                                                                     | 22.7 | 138       |
| 97  | Antigen-presenting Cell Activation: a Link Between Infection and Autoimmunity?. Journal of Autoimmunity, 2001, 16, 303-308.                                                                                                     | 6.5  | 26        |
| 98  | Negative Selection during the Peripheral Immune Response to Antigen. Journal of Experimental<br>Medicine, 2001, 193, 1-12.                                                                                                      | 8.5  | 161       |
| 99  | Detection of autoreactive T cells in H-2u mice using peptide–MHC multimers. International<br>Immunology, 2000, 12, 1553-1560.                                                                                                   | 4.0  | 50        |
| 100 | The role of cytokines in immunological tolerance: potential for therapy. Expert Reviews in Molecular<br>Medicine, 2000, 2, 1-20.                                                                                                | 3.9  | 40        |
| 101 | Kinetics of Peptide Uptake and Tissue Distribution Following a Single Intranasal Dose of Peptide.<br>Immunological Investigations, 2000, 29, 61-70.                                                                             | 2.0  | 22        |
| 102 | Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. International Immunology, 1999, 11, 667-675.                                                                      | 4.0  | 47        |
| 103 | Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10.<br>International Immunology, 1999, 11, 1625-1634.                                                                             | 4.0  | 183       |
| 104 | Mechanisms of central and peripehral T-cell tolerance: lessons from experimental models of multiple sclerosis. Immunological Reviews, 1999, 169, 123-137.                                                                       | 6.0  | 59        |
| 105 | Therapeutic potential of TCR antagonists is determined by their ability to modulate a diverse repertoire of autoreactive T cells. European Journal of Immunology, 1999, 29, 1850-1857.                                          | 2.9  | 30        |
| 106 | Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin.<br>European Journal of Immunology, 1998, 28, 1251-1261.                                                                     | 2.9  | 93        |
| 107 | IDENTIFICATION OF AN INDIRECTLY PRESENTED EPITOPE IN A MOUSE MODEL OF SKIN ALLOGRAFT<br>REJECTION1. Transplantation, 1998, 65, 1357-1364.                                                                                       | 1.0  | 9         |
| 108 | PROLONGATION OF MURINE VASCULARIZED HEART ALLOGRAFT SURVIVAL BY RECIPIENT-SPECIFIC ANTI-MAJOR<br>HISTOCOMPATIBILITY COMPLEX CLASS II ANTIBODY1. Transplantation, 1997, 64, 525-528.                                             | 1.0  | 7         |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mucosal Tolerance in a Murine Model of Experimental Autoimmune Encephalomyelitisa. Annals of the<br>New York Academy of Sciences, 1996, 778, 228-242.                                                                                                                 | 3.8  | 52        |
| 110 | Lowering the tone: mechanisms of immunodominance among epitopes with low affinity for MHC.<br>Trends in Immunology, 1996, 17, 80-85.                                                                                                                                  | 7.5  | 65        |
| 111 | Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature, 1996, 379, 343-346.                                                                                                                                              | 27.8 | 382       |
| 112 | The nature of cryptic epitopes within the self-antigen myelin basic protein. International Immunology, 1996, 8, 1035-1043.                                                                                                                                            | 4.0  | 29        |
| 113 | Induction of Antigen-Specific Unresponsiveness with Synthetic Peptides: Specific Immunotherapy for<br>Treatment of Allergic and Autoimmune Conditions. International Archives of Allergy and Immunology,<br>1995, 108, 355-359.                                       | 2.1  | 9         |
| 114 | Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells<br>in naive and primed adult mice—implications for autoimmunity. International Immunology, 1995, 7,<br>1255-1263.                                             | 4.0  | 73        |
| 115 | Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity, 1995, 3, 407-415.                                                                                                                                                 | 14.3 | 396       |
| 116 | Immunotherapy of autoimmune disease with synthetic peptides. Trends in Immunology, 1994, 15, 91.                                                                                                                                                                      | 7.5  | 3         |
| 117 | Immunotherapy of autoimmune disease. Current Opinion in Immunology, 1993, 5, 925-933.                                                                                                                                                                                 | 5.5  | 12        |
| 118 | Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene,<br>1993, 128, 79-83.                                                                                                                                           | 2.2  | 130       |
| 119 | Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. International Immunology, 1993, 5, 1159-1165.                                                   | 4.0  | 281       |
| 120 | An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. International Immunology, 1993, 5, 1151-1158.                                                                                          | 4.0  | 180       |
| 121 | Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant<br>T cell epitope in naive and sensitized mice Journal of Experimental Medicine, 1993, 178, 1783-1788.                                                          | 8.5  | 327       |
| 122 | MHC-binding peptides for immunotherapy ofexperimental autoimmune disease. Journal of Autoimmunity, 1992, 5, 103-113.                                                                                                                                                  | 6.5  | 23        |
| 123 | A role for major histocompatibility complex-binding peptides in the immunotherapy of autoimmune disease. Seminars in Immunopathology, 1992, 14, 95-101.                                                                                                               | 4.0  | 1         |
| 124 | Peptide-MHC interaction in autoimmunity. Current Opinion in Immunology, 1992, 4, 748-753.                                                                                                                                                                             | 5.5  | 13        |
| 125 | Therapeutic immunosuppression of T cells. Current Opinion in Biotechnology, 1992, 3, 668-674.                                                                                                                                                                         | 6.6  | 1         |
| 126 | A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather<br>than induce experimental autoimmune encephalomyelitis Proceedings of the National Academy of<br>Sciences of the United States of America, 1991, 88, 9633-9637. | 7.1  | 159       |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | T Cell Recognition in Experimental Autoimmune Encephalomyelitis: Prospects for Immune Intervention with Synthetic Peptides. International Reviews of Immunology, 1990, 6, 37-47.                                                                             | 3.3  | 8         |
| 128 | Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell, 1989, 59, 247-255.                                                                                                                           | 28.9 | 399       |
| 129 | T cell recognition as the target for immune intervention in autoimmune disease. Cell, 1989, 57, 709-715.                                                                                                                                                     | 28.9 | 218       |
| 130 | Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell, 1988, 54, 263-273.                                                                                              | 28.9 | 996       |
| 131 | Searching for MHC-restricted anti-viral antibodies: antibodies recognizing the nucleoprotein of influenza virus dominate the serological response of C57BL/6 mice to syngeneic influenza-infected cells. European Journal of Immunology, 1987, 17, 999-1006. | 2.9  | 23        |
| 132 | The recognition of influenza A virus- infected cells by cytotoxic T lymphocytes. Trends in Immunology, 1987, 8, 239-246.                                                                                                                                     | 7.5  | 35        |
| 133 | The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell, 1986, 44, 959-968.                                                                                                         | 28.9 | 1,746     |
| 134 | Domain interactions of H–2 class I antigens alter cytotoxic T-cell recognition sites. Nature, 1984, 309, 279-281.                                                                                                                                            | 27.8 | 186       |
| 135 | Dk-restricted antiinfluenza cytotoxic t-cell clone loses one of its two alloreactivities.<br>Immunogenetics, 1984, 20, 131-139.                                                                                                                              | 2.4  | 8         |
| 136 | Cytotoxic T-cell recognition of influenza-infected target cells varies in different H-2 k mouse strains.<br>Immunogenetics, 1983, 18, 177-181.                                                                                                               | 2.4  | 10        |
| 137 | Loss of serological determinants does not affect recognition of H-2Kk target cells by an influenza-specific cytotoxic T cell clone. European Journal of Immunology, 1983, 13, 762-766.                                                                       | 2.9  | 12        |
| 138 | SARS-CoV-2 Spike- and Nucleoprotein-Specific Antibodies Induced After Vaccination or Infection Promote Classical Complement Activation. Frontiers in Immunology, 0, 13, .                                                                                    | 4.8  | 12        |