Robert Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206943/publications.pdf

Version: 2024-02-01

172 papers

8,315 citations

50276 46 h-index 51608 86 g-index

174 all docs

174 docs citations

174 times ranked

4669 citing authors

#	Article	IF	CITATIONS
1	Effects of emulsifier concentration in a high-internal-phase, W/O emulsion binder on particle agglomeration. Chemical Engineering Science, 2022, 248, 117098.	3.8	1
2	Gravitational collision efficiencies of small viscous drops at finite Stokes numbers and low Reynolds numbers. International Journal of Multiphase Flow, 2022, 146, 103876.	3.4	5
3	Drop squeezing between arbitrary smooth obstacles. Journal of Fluid Mechanics, 2021, 908, .	3.4	6
4	Simulation of drop motion and breakup in narrow pores. Chemical Engineering Science, 2021, 229, 116057.	3.8	7
5	Modelling of particle capture by expanding droplets. Journal of Fluid Mechanics, 2021, 912, .	3.4	5
6	Water transport by osmosis through a high-internal-phase, water-in-oil emulsion. Chemical Engineering Science, 2021, 232, 116348.	3.8	8
7	Internal circulation and mixing within tight-squeezing deformable droplets. Physical Review E, 2021, 103, 043106.	2.1	3
8	Particle interactions with permeable drops in shear flow. Powder Technology, 2021, 383, 410-417.	4.2	2
9	Algorithm for flow of highly-concentrated emulsions through a narrow constriction. Journal of Computational Physics, 2021, 438, 110363.	3.8	4
10	Diffusion-limited osmotic swelling of droplets. Physics of Fluids, 2021, 33, 117109.	4.0	2
11	Boundary-integral study of a freely suspended drop in a T-shaped microchannel. International Journal of Multiphase Flow, 2020, 130, 103379.	3.4	6
12	Improving the facultyâ€student experience in chemical engineering. AICHE Journal, 2020, 66, e16960.	3.6	0
13	Oblique collisions of two wetted spheres. Physical Review Fluids, 2020, 5, .	2.5	5
14	Simultaneous and sequential collisions of three wetted spheres. Journal of Fluid Mechanics, 2019, 881, 983-1009.	3.4	7
15	Drops with insoluble surfactant squeezing through interparticle constrictions. Journal of Fluid Mechanics, 2019, 878, 324-355.	3.4	10
16	Microfiltration in Pharmaceutics and Biotechnology. , 2019, , 29-67.		10
17	Particle collection by permeable drops. Physical Review Fluids, 2018, 3, .	2.5	11
18	General rheology of highly concentrated emulsions with insoluble surfactant. Journal of Fluid Mechanics, 2017, 816, 661-704.	3.4	14

#	Article	IF	Citations
19	Motion of Deformable Drops Through Porous Media. Annual Review of Fluid Mechanics, 2017, 49, 71-90.	25.0	39
20	Extensional and shear flows, and general rheology of concentrated emulsions of deformable drops. Journal of Fluid Mechanics, 2015, 779, 197-244.	3.4	19
21	A generalized Oldroyd's model for non-Newtonian liquids with applications to a dilute emulsion of deformable drops. Journal of Rheology, 2014, 58, 759-777.	2.6	6
22	Growth of multiparticle aggregates in sedimenting suspensions. Journal of Fluid Mechanics, 2014, 742, 577-617.	3.4	4
23	Enhanced sediment flow in inclined settlers via surface modification or applied vibration for harvesting microalgae. Algal Research, 2013, 2, 369-377.	4.6	5
24	Emulsion flow through a packed bed with multiple drop breakup. Journal of Fluid Mechanics, 2013, 725, 611-663.	3.4	33
25	Fractionation of Organic Fuel Precursors from Electrolytes with Membranes. Industrial & Engineering Chemistry Research, 2013, 52, 10530-10539.	3.7	5
26	Particle concentration using inclined sedimentation via sludge accumulation and removal for algae harvesting. Chemical Engineering Science, 2013, 91, 79-85.	3.8	23
27	Hydrodynamic separation of particles using pinchedâ€flow fractionation. AICHE Journal, 2013, 59, 3444-3457.	3.6	15
28	A moving-frame boundary-integral method for particle transport in microchannels of complex shape. Physics of Fluids, 2012, 24, 043302.	4.0	6
29	Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles. Physical Review E, 2012, 86, 021303.	2.1	21
30	Drop trapping in axisymmetric constrictions with arbitrary contact angle. Physics of Fluids, 2012, 24, 062102.	4.0	2
31	Agglomeration and de-agglomeration of rotating wet doublets. Journal of Fluid Mechanics, 2012, 708, 128-148.	3.4	21
32	Simulations of gravity-induced trapping of a deformable drop in a three-dimensional constriction. Journal of Colloid and Interface Science, 2012, 383, 167-176.	9.4	11
33	Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Research, 2012, 1, 32-39.	4.6	89
34	Soft-lithography fabrication of microfluidic features using thiol-ene formulations. Lab on A Chip, 2011, 11, 2772.	6.0	59
35	Gravity-induced collisions of spherical drops covered with compressible surfactant. Journal of Fluid Mechanics, 2011, 667, 369-402.	3.4	6
36	Empirical Evaluation of Inhibitory Product, Substrate, and Enzyme Effects During the Enzymatic Saccharification of Lignocellulosic Biomass. Applied Biochemistry and Biotechnology, 2010, 161, 468-482.	2.9	19

#	Article	IF	CITATIONS
37	Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring constriction. Physics of Fluids, 2010, 22, .	4.0	19
38	Creeping motion and pending breakup of drops and bubbles near an inclined wall. Physics of Fluids, $2009, 21, .$	4.0	5
39	Motion of deformable drops through granular media and other confined geometries. Journal of Colloid and Interface Science, 2009, 334, 113-123.	9.4	12
40	Computational modeling and comparison of three co-laminar microfluidic mixing techniques. Microfluidics and Nanofluidics, 2008, 5, 43-53.	2.2	7
41	Algorithm for direct numerical simulation of emulsion flow through a granular material. Journal of Computational Physics, 2008, 227, 7841-7888.	3.8	26
42	Gravity-driven motion of a deformable drop or bubble near an inclined plane at low Reynolds number. International Journal of Multiphase Flow, 2008, 34, 408-418.	3.4	17
43	Boundary-Integral Algorithm for Drop Squeezing through a Granular Material. AIP Conference Proceedings, 2008, , .	0.4	1
44	Squeezing of a periodic emulsion through a cubic lattice of spheres. Physics of Fluids, 2008, 20, 040803.	4.0	16
45	Interactions Between Aggregated Particles in Stokes Flow. AIP Conference Proceedings, 2008, , .	0.4	0
46	Low-Reynolds-number motion of a deformable drop between two parallel plane walls. International Journal of Multiphase Flow, 2007, 33, 182-206.	3.4	79
47	A water-activated pump for portable microfluidic applications. Journal of Colloid and Interface Science, 2007, 305, 239-249.	9.4	28
48	A boundary-integral study of a drop squeezing through interparticle constrictions. Journal of Fluid Mechanics, 2006, 564, 227.	3.4	50
49	Dynamic simulation of spheroid motion between two parallel plane walls in low-Reynolds-number Poiseuille flow. Journal of Fluid Mechanics, 2006, 553, 187.	3.4	18
50	Low-Reynolds-number motion of a heavy sphere between two parallel plane walls. Chemical Engineering Science, 2006, 61, 1932-1945.	3.8	13
51	Surfactant effects on buoyancy-driven viscous interactions of deformable drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 50-60.	4.7	11
52	Elastohydrodynamic theory for wet oblique collisions. Powder Technology, 2006, 168, 42-52.	4.2	23
53	Deposition of foulant particles during tangential flow filtration. Journal of Membrane Science, 2006, 271, 101-113.	8.2	39
54	Collisions of spheres with wet and dry porous layers on a solid wall. Chemical Engineering Science, 2006, 61, 417-427.	3.8	17

#	Article	IF	Citations
55	A multipole-accelerated algorithm for close interaction of slightly deformable drops. Journal of Computational Physics, 2005, 207, 695-735.	3.8	35
56	Particle transport in Poiseuille flow in narrow channels. International Journal of Multiphase Flow, 2005, 31, 529-547.	3.4	42
57	Low-velocity collisions of particles with a dry or wet wall. Microgravity Science and Technology, 2005, 17, 18-25.	1.4	25
58	In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. Lab on A Chip, 2005, 5, 151.	6.0	43
59	Buoyancy-driven coalescence of spherical drops covered with incompressible surfactant at arbitrary Péclet number. Journal of Colloid and Interface Science, 2004, 270, 205-220.	9.4	14
60	Secondary Membranes for Flux Optimization in Membrane Filtration of Biologic Suspensions. Applied Biochemistry and Biotechnology, 2004, 114, 417-432.	2.9	2
61	Cellulase Retention and Sugar Removal by Membrane Ultrafiltration During Lignocellulosic Biomass Hydrolysis. Applied Biochemistry and Biotechnology, 2004, 114, 585-600.	2.9	38
62	Electroosmotic flow in channels with step changes in zeta potential and cross section. Journal of Colloid and Interface Science, 2004, 270, 242-246.	9.4	28
63	Modeling and verification of fluid-responsive polymer pumps for microfluidic systems. Chemical Engineering Science, 2004, 59, 5967-5974.	3.8	22
64	Oblique collisions and rebound of spheres from a wetted surface. Journal of Fluid Mechanics, 2004, 509, 63-81.	3.4	47
65	Cellulase Retention and Sugar Removal by Membrane Ultrafiltration During Lignocellulosic Biomass Hydrolysis. , 2004, , 585-599.		7
66	Secondary Membranes for Flux Optimization in Membrane Filtration of Biologic Suspensions. , 2004, , 417-432.		0
67	Simplified model for droplet growth in shear flow. AICHE Journal, 2003, 49, 546-548.	3.6	11
68	Interaction of sedimenting spheres with multiple surface roughness scales. Journal of Fluid Mechanics, 2003, 492, 101-129.	3.4	10
69	Yeast-Fouling Effects in Cross-Flow Microfiltration with Periodic Reverse Filtration. Industrial & Engineering Chemistry Research, 2003, 42, 130-139.	3.7	27
70	Large–scale simulations of concentrated emulsion flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 813-845.	3.4	40
71	Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Physics of Fluids, 2003, 15, 1711.	4.0	148
72	Solid–solid contacts due to surface roughness and their effects on suspension behaviour. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 871-894.	3.4	43

#	Article	IF	CITATIONS
73	General Ellipsoidal Model for Deformable Drops in Viscous Flows. Industrial & Engineering Chemistry Research, 2002, 41, 6270-6278.	3.7	11
74	Elastohydrodynamic rebound of spheres from coated surfaces. Journal of Fluid Mechanics, 2002, 468, 107-119.	3.4	105
75	Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. Journal of Fluid Mechanics, 2002, 455, 21-61.	3.4	68
76	Shear stress of a monolayer of rough spheres. Journal of Fluid Mechanics, 2002, 452, 425-441.	3.4	50
77	Yeast foulant removal by backpulses in crossflow microfiltration. Journal of Membrane Science, 2002, 208, 389-404.	8.2	38
78	Ellipsoidal model for deformable drops and application to non-Newtonian emulsion flow. Journal of Non-Newtonian Fluid Mechanics, 2002, 102, 281-298.	2.4	17
79	Motion of a sphere down a rough plane in a viscous fluid. International Journal of Multiphase Flow, 2002, 28, 1787-1800.	3.4	20
80	Direct observation of membrane cleaning via rapid backpulsing. Desalination, 2002, 146, 135-140.	8.2	31
81	Interaction of two touching spheres in a viscous fluid. Chemical Engineering Science, 2002, 57, 1997-2006.	3.8	22
82	Combined Sedimentation and Filtration Process for Cellulase Recovery During Hydrolysis of Lignocellulosic Biomass. Applied Biochemistry and Biotechnology, 2002, 98-100, 1161-1172.	2.9	23
83	Combined Sedimentation and Filtration Process for Cellulase Recovery During Hydrolysis of Lignocellulosic Biomass., 2002,, 1161-1172.		1
84	BUOYANCY-DRIVEN INTERACTIONS OF VISCOUS DROPS WITH DEFORMING INTERFACES., 2002, , 252-252.		0
85	The effect of slight deformation on droplet coalescence in linear flows. Physics of Fluids, 2001, 13, 1178-1190.	4.0	81
86	MEMBRANE SURFACE MODIFICATION AND BACKPULSING FOR WASTEWATER TREATMENT. Separation Science and Technology, 2001, 36, 1557-1573.	2.5	17
87	MICROFLOTATION OF FINE OIL DROPLETS BY SMALL AIR BUBBLES: EXPERIMENT AND THEORY. Separation Science and Technology, 2001, 36, 1-15.	2.5	6
88	Buoyancy-driven interactions of viscous drops with deforming interfaces. Journal of Fluid Mechanics, 2001, 446, 253-269.	3.4	16
89	Microfiltration of protein-cell mixtures with crossflushing or backflushing. Journal of Membrane Science, 2001, 183, 1-14.	8.2	49
90	Direct visual observation of yeast deposition and removal during microfiltration. Journal of Membrane Science, 2001, 189, 217-230.	8.2	77

#	Article	IF	Citations
91	Factors affecting membrane fouling reduction by surface modification and backpulsing. Journal of Membrane Science, 2001, 189, 255-270.	8.2	99
92	Cellulase Recovery via Membrane Filtration. Applied Biochemistry and Biotechnology, 2001, 91-93, 297-310.	2.9	46
93	Droplet Growth by Coalescence in Binary Fluid Mixtures. Physical Review Letters, 2001, 87, 098304.	7.8	37
94	Optimization of repeated-batch transcription for RNA production. Biotechnology and Bioengineering, 2000, 69, 679-687.	3.3	7
95	An Efficient Algorithm for Hydrodynamical Interaction of Many Deformable Drops. Journal of Computational Physics, 2000, 157, 539-587.	3.8	86
96	Infrasonic pulsing for foulant removal in crossflow microfiltration. Journal of Membrane Science, 2000, 180, 157-169.	8.2	7
97	Theoretical and experimental flux maximization by optimization of backpulsing. Journal of Membrane Science, 2000, 165, 225-236.	8.2	54
98	Microflotation of fine particles in the presence of a bulk-insoluble surfactant. International Journal of Multiphase Flow, 2000, 26, 891-920.	3.4	16
99	The viscosity of a dilute suspension of rough spheres. Journal of Fluid Mechanics, 2000, 421, 339-367.	3.4	65
100	A Novel Sequential Photoinduced Living Graft Polymerization. Macromolecules, 2000, 33, 331-335.	4.8	288
101	Microfiltration of protein mixtures and the effects of yeast on membrane fouling. Journal of Membrane Science, 1999, 155, 113-122.	8.2	97
102	Application of a Fed-Batch System To Produce RNA by In Vitro Transcription. Biotechnology Progress, 1999, 15, 174-184.	2.6	17
103	Effects of Added Yeast on Protein Transmission and Flux in Cross-Flow Membrane Microfiltration. Biotechnology Progress, 1999, 15, 472-479.	2.6	51
104	The flotation rates of fine spherical particles under Brownian and convective motion. Chemical Engineering Science, 1999, 54, 149-157.	3.8	22
105	Mass transfer to a surfactant-covered bubble or drop. AICHE Journal, 1999, 45, 1355-1358.	3.6	20
106	Modeling of repeated-batch transcription for production of RNA. Journal of Biotechnology, 1999, 71, 25-37.	3.8	3
107	Buoyancy-driven viscous interaction of a rising drop with a smaller trailing drop. Physics of Fluids, 1999, 11, 1016-1028.	4.0	40
108	Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm. Journal of Fluid Mechanics, 1999, 391, 249-292.	3.4	101

#	Article	IF	CITATIONS
109	Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing. Biotechnology and Bioengineering, 1998, 60, 77-87.	3.3	68
110	Application of cross-flow microfiltration with rapid backpulsing to wastewater treatment. Journal of Hazardous Materials, 1998, 63, 179-197.	12.4	35
111	Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing. , 1998, 60, 77.		1
112	A novel boundary-integral algorithm for viscous interaction of deformable drops. Physics of Fluids, 1997, 9, 1493-1511.	4.0	167
113	Buoyancy-driven coalescence of slightly deformable drops. Journal of Fluid Mechanics, 1997, 346, 117-148.	3.4	90
114	Application of Solution Equilibrium Analysis to in Vitro RNA Transcription. Biotechnology Progress, 1997, 13, 747-756.	2.6	25
115	Modeling and optimization of a batch process for in vitro RNA production., 1997, 56, 210-220.		17
116	Protein recovery from bacterial cell debris using crossflow microfiltration with backpulsing. Journal of Membrane Science, 1996, 118, 259-268.	8.2	61
117	Membrane fouling during microfiltration of protein mixtures. Journal of Membrane Science, 1996, 119, 269-284.	8.2	136
118	Classification of concentrated suspensions using inclined settlers. International Journal of Multiphase Flow, 1996, 22, 563-574.	3.4	26
119	Modeling of concentration polarization and depolarization with high-frequency backpulsing. Journal of Membrane Science, 1996, 121, 229-242.	8.2	80
120	The nature of particle contacts in sedimentation. Physics of Fluids, 1996, 8, 1389-1396.	4.0	41
121	RNA Transcription from Immobilized DNA Templates. Biotechnology Progress, 1995, 11, 393-396.	2.6	20
122	Cross-flow microfiltration with high-frequency reverse filtration. AICHE Journal, 1995, 41, 501-508.	3.6	115
123	Protein recovery from cell debris using rotary and tangential crossflow microfiltration. Biotechnology and Bioengineering, 1995, 47, 155-164.	3.3	31
124	Large-scale oligoribonucleotide production. Current Opinion in Biotechnology, 1995, 6, 213-217.	6.6	32
125	Collision rates of spherical drops or particles in a shear flow at arbitrary Péclet numbers. Physics of Fluids, 1995, 7, 2310-2327.	4.0	30
126	Simultaneous sedimentation and coalescence of a dilute dispersion of small drops. Journal of Fluid Mechanics, 1995, 295, 247.	3.4	29

#	Article	IF	Citations
127	Near-contact electrophoretic particle motion. Journal of Fluid Mechanics, 1995, 288, 103-122.	3.4	34
128	Protein Fouling of Track-Etched Polycarbonate Microfiltration Membranes. Journal of Colloid and Interface Science, 1994, 167, 104-116.	9.4	216
129	Flotation rates of fine, spherical particles and droplets. Chemical Engineering Science, 1994, 49, 3923-3941.	3.8	27
130	Hindered settling function with no empirical parameters for polydisperse suspensions. AICHE Journal, 1994, 40, 570-575.	3.6	89
131	Yeast cake layers as secondary membranes in dead-end microfiltration of bovine serum albumin. Journal of Membrane Science, 1994, 92, 247-256.	8.2	46
132	The behavior of suspensions and macromolecular solutions in crossflow microfiltration. Journal of Membrane Science, 1994, 96, 1-58.	8.2	1,180
133	Cell separations using targeted monoclonal antibodies against overproduced surface proteins. Applied Biochemistry and Biotechnology, 1994, 45-46, 233-244.	2.9	3
134	Gravity-induced coalescence of drops at arbitrary Péclet numbers. Journal of Fluid Mechanics, 1994, 280, 119-148.	3.4	32
135	The collision rate of small drops in linear flow fields. Journal of Fluid Mechanics, 1994, 265, 161-188.	3.4	111
136	Separation and classification of axisymmetric particles in an inclined settler. International Journal of Multiphase Flow, 1993, 19, 803-816.	3.4	4
137	Crossflow microfiltration of yeast suspensions in tubular filters. Biotechnology Progress, 1993, 9, 625-634.	2.6	56
138	Microhydrodynamics of particulate. Advances in Colloid and Interface Science, 1993, 43, 17-50.	14.7	22
139	Near-contact thermocapillary motion of two non-conducting drops. Journal of Fluid Mechanics, 1993, 256, 107-131.	3.4	19
140	Experimental study of two interacting drops in an immiscible fluid. Journal of Fluid Mechanics, 1993, 249, 227.	3.4	16
141	Collective effects of temperature gradients and gravity on droplet coalescence. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1602-1613.	1.6	14
142	Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Physics of Fluids A, Fluid Dynamics, 1992, 4, 2607-2619.	1.6	49
143	Modeling of Fouling of Crossflow Microfiltration Membranes. Separation and Purification Reviews, 1992, 21, 75-126.	0.8	165
144	Hydrodynamic diffusion of a sphere sedimenting through a dilute suspension of neutrally buoyant spheres. Journal of Fluid Mechanics, 1992, 236, 513-533.	3.4	31

#	Article	IF	Citations
145	Electrokinetic isolation of vesicles and ribosomes derived from Serratia marcescens. Biotechnology Progress, 1992, 8, 429-435.	2.6	7
146	An adjustable expression system for controlling growth rate, plasmid maintenance, and culture dynamics. Biotechnology and Bioengineering, 1992, 40, 1027-1038.	3.3	7
147	The rate of collisions due to Brownian or gravitational motion of small drops. Journal of Fluid Mechanics, 1991, 230, 479-504.	3.4	142
148	Experimental verification of the shear-induced hydrodynamic diffusion model of crossflow microfiltration. Journal of Membrane Science, 1991, 62, 249-273.	8.2	88
149	Cell Separations Using Differential Sedimentation in Inclined Settlers. ACS Symposium Series, 1991, , 113-127.	0.5	6
150	Dynamics of induced CAT expression in E. coli. Biotechnology and Bioengineering, 1991, 38, 749-760.	3.3	63
151	Close approach and deformation of two viscous drops due to gravity and van der waals forces. Journal of Colloid and Interface Science, 1991, 144, 412-433.	9.4	141
152	Sedimentation of axisymmetric particles in shear flows. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2051-2060.	1.6	15
153	The Effects of van der Waals Attractions on Cloud Droplet Growth by Coalescence. Journals of the Atmospheric Sciences, 1990, 47, 1075-1080.	1.7	16
154	Continuous recombinant bacterial fermentations utilizing selective flocculation and recycle. Biotechnology Progress, 1990, 6, 7-12.	2.6	26
155	Optimal chemostat cascades for periplasmic protein production. Biotechnology Progress, 1990, 6, 430-436.	2.6	2
156	Inclined Sedimentation for Selective Retention of Viable Hybridomas in a Continuous Suspension Bioreactor. Biotechnology Progress, 1990, 6, 458-464.	2.6	98
157	EXPERIMENTAL DETERMINATION OF THE PERMEABILITY AND RELATIVE VISCOSITY FOR FINE LATEXES AND YEAST SUSPENSIONS. Chemical Engineering Communications, 1990, 91, 11-28.	2.6	11
158	On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. Journal of Fluid Mechanics, 1990, 217, 547-573.	3.4	184
159	The lubrication force between two viscous drops. Physics of Fluids A, Fluid Dynamics, 1989, 1, 77-81.	1.6	224
160	Competitive yeast fermentation with selective flocculation and recycle. Biotechnology and Bioengineering, 1989, 33, 767-776.	3.3	19
161	The lubrication force between spherical drops, bubbles and rigid particles in a viscous fluid. International Journal of Multiphase Flow, 1989, 15, 627-638.	3.4	43
162	The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. Journal of Fluid Mechanics, 1989, 209, 501-519.	3.4	45

#	Article	IF	CITATIONS
163	Particle classification for dilute suspensions using an inclined settler. Industrial & Engineering Chemistry Research, 1989, 28, 785-793.	3.7	38
164	Spreading of the interface at the top of a slightly polydisperse sedimenting suspension. Journal of Fluid Mechanics, 1988, 196, 107-134.	3.4	111
165	Elastohydrodynamic collision and rebound of spheres: Experimental verification. Physics of Fluids, 1988, 31, 1324.	1.4	156
166	HYDRODYNAMIC MODEL AND EXPERIMENTS FOR CROSSFLOW MICROFILTRATION. Chemical Engineering Communications, 1987, 49, 217-234.	2.6	68
167	The elastohydrodynamic collision of two spheres. Journal of Fluid Mechanics, 1986, 163, 479-497.	3.4	327
168	Modeling and Measurement of Yeast Flocculation. Biotechnology Progress, 1986, 2, 91-97.	2.6	42
169	The rate of coagulation of a dilute polydisperse system of sedimenting spheres. Journal of Fluid Mechanics, 1984, 145, 179.	3.4	104
170	Wave formation and growth during sedimentation in narrow tilted channels. Physics of Fluids, 1983, 26, 2055.	1.4	25
171	The sedimentation of polydisperse suspensions in vessels having inclined walls. International Journal of Multiphase Flow, 1982, 8, 571-585.	3.4	38
172	Direct Visual Observation of Microfiltration Membrane Fouling and Cleaning., 0,, 9-32.		O