Julian D Olden

List of Publications by Year

 in descending order[^0]

Applying assessments of adaptive capacity to inform naturalâ€esource management in a changing
climate. Conservation Biology, 2022, 36, .

Invasive Species in Streams and Rivers. , 2022, , 436-452.
4

Toward Improved Understanding of Streamflow Effects on Freshwater Fishes. Fisheries, 2022, 47, 290-298.

Small artificial impoundments have big implications for hydrology and freshwater biodiversity.
Frontiers in Ecology and the Environment, 2022, 20, 141-146.

How do changes in flow magnitude due to hydropower operations affect fish abundance and biomass
in temperate regions? A systematic review. Environmental Evidence, 2022, 11, 3.
$2.7 \quad 7$

Modeling the freshwater ecological response to changes in flow and thermal regimes influenced by reservoir dynamics. Journal of Hydrology, 2022, 608, 127591.
5.4

Seasonal Catch Rates of the Endemic Olympic Mudminnow in Wetland Habitat. Northwest Science,
2022, 95,

Multi-scale threat assessment of riverine ecosystems in the Colorado River Basin. Ecological
Indicators, 2022, 138, 108840.
6.3

11
$9 \quad$ Assessing placement bias of the global river gauge network. Nature Sustainability, 2022, 5, 586-592.
23.7

51

10 Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China. Diversity, 2022, 14, 476.

Substantial intraspecific trait variation across a hydrological gradient in northern Australian fishes.
Ecosphere, 2022, 13, .

The Future of Legislation, Policy, Risk Analysis, and Management of Non-Native Freshwater Fishes in
12 China. Reviews in Fisheries Science and Aquaculture, 2021, 29, 149-166.
9.1

11

13 RivFishTIME: A global database of fish timeâ€series to study global change ecology in riverine systems.
Global Ecology and Biogeography, 2021, 30, 38-50.

Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States.
Geophysical Research Letters, 2021, 48, e2020GL090794.

Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia, 2021, 848,
1967-1979.

Hydrologic classification of Tanzanian rivers to support national water resource policy.
Ecohydrology, 2021, 14, e2282.

Negative impacts of mining on Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .
1.0

17

19 The geography of metapopulation synchrony in dendritic river networks. Ecology Letters, 2021, 24,
$791-801$.

Designing flow regimes to support entire river ecosystems. Frontiers in Ecology and the Environment, 2021, 19, 326-333.

Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. Science of the Total Environment, 2021, 770, 145318.
8.0

Riparian land use and in-channel stressors drive fish community structure in the Yangtze River. Landscape Ecology, 2021, 36, 3079-3095.

Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .
7.1

Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.
5.2

Twentyâ€five essential research questions to inform the protection and restoration of freshwater
biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2632-2653.
2.0

49

25
Coâ€development of a risk assessment strategy for managed relocation. Ecological Solutions andEvidence, 2021, 2, e12092.Mechanistic invasive species management models and their application in conservation. Conservation
Science and Practice, 2021, 3, e533. 27
Climate Change Effects on North American Fish and Fisheries to Inform Adaptation Strategies.
29 Comparing opportunistic and strategic removal efforts to manage invasive fish species using a dynamic multiâ€state occupancy model. Journal of Applied Ecology, 2021, 58, 2797-2809.
4.0 4Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nature23.7An invader in salmonid rearing habitat: current and future distributions of smallmouth bass
31 (<i>Micropterus dolomieu<|i>) in the Columbia River Basin. Canadian Journal of Fisheries and AquaticSciences, 2020, 77, 314-325.32 Knowledge Exchange and Social Capital for Freshwater Ecosystem Assessments. BioScience, 2020, 70,174-183.
Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United
States. Hydrobiologia, 2020, 847, 3727-3741.2.017
Scale-dependent patterns of fish faunal homogenization in Neotropical reservoirs. Hydrobiologia,
2020, 847, 3759-3772.
Small instream infrastructure: Comparative methods and evidence of environmental and ecological responses. Ecological Solutions and Evidence, 2020, 1, e12026.
37
38
Use of environmental DNA to detect the invasive aquatic plants <i>Myriophyllum spicatum</i> and <i>Egeria densa</i> in lakes. Freshwater Science, 2020, 39, 521-533.
1.8

15

Preface: aquatic homogenoceneâ $€$ "understanding the era of biological re-shuffling in aquatic ecosystems. Hydrobiologia, 2020, 847, 3705-3709.
2.0

17

Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change.
39 Frontiers in Ecology and the Environment, 2020, 18, 520-528.
$4.0 \quad 83$
6.5

Reviews: Water, 2020, 7, e1473.
37
40 River ecosystem conceptual models and nonâ€perennial rivers: A critical review. Wiley Interdisciplinary
-

41 Detecting Montane Flowering Phenology with CubeSat Imagery. Remote Sensing, 2020, 12, 2894.
4.0

11

42 Are domesticated freshwater fish an underappreciated culprit of ecosystem change?. Fish and
Fisheries, 2020, 21, 1253-1258.
5.3

13

43	Development of a quantitative PCR assay for detecting Egeria densa in environmental DNA samples. Conservation Genetics Resources, 2020, 12, 545-548.	0.8	7
44	Invaders induce coordinated isotopic niche shifts in native fish species. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1348-1358.	1.4	20
45	Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200777.	2.6	52
46	What are the effects of flow-regime changes on fish productivity in temperate regions? A systematic map. Environmental Evidence, 2020, 9, .	2.7	22
47	Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wetấ "dry tropics of northern Australia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1397-1411.	2.0	12
48	Threshold responses of riverine fish communities to land use conversion across regions of the world. Global Change Biology, 2020, 26, 4952-4965.	9.5	53
49	Effects of nonnative species on the stability of riverine fish communities. Ecography, 2020, 43, 1156-1166.	4.5	24

50 Bending the Curve of Clobal Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 2020, 70, 330-342.
4.9

553
Threats to Rearing Juvenile Chinook Salmon from Nonnative Smallmouth Bass Inferred from Stable
Isotope and Fatty Acid Biomarkers. Transactions of the American Fisheries Society, 2020, 149, 350-3
52 There's more to Fish than Just Food: Exploring the Diverse Ways that Fish Contribute to Human
Society. Fisheries, 2020, 45, 453-464.

> Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary
> Reviews: Water, 2020, 7, e1436.
6.5

63

```
5 5 ~ M i l i t a r y ~ F l i g h t s ~ T h r e a t e n ~ t h e ~ W i l d e r n e s s ~ S o u n d s c a p e s ~ o f ~ t h e ~ O l y m p i c ~ P e n i n s u l a , ~ W a s h i n g t o n .
Northwest Science, 2020, 94, .
```

$0.2 \quad 2$

RESPONSE OF MIGRATORY SCULPIN POPULATIONS TO BARRIER REMOVAL IN FOUR SMALL LOWLAND URBAN

```
5 7 ~ W h a t ' s ~ i n ~ a ~ N a m e ? ~ P a t t e r n s , ~ T r e n d s , ~ a n d ~ S u g g e s t i o n s ~ f o r ~ D e f i n i n g ~ N o n - P e r e n n i a l ~ R i v e r s ~ a n d ~ S t r e a m s .
Water (Switzerland), 2020, 12, }1980
2.7 4
```

River ecosystem conceptual models and non-perennial rivers: A critical review. Wiley Interdisciplinary
Reviews: Water, 2020, 7, .
6.5

0

59 Dynamic contributions of intermittent and perennial streams to fish beta diversity in dryland rivers.
Journal of Biogeography, 2019, 46, 2311-2322.
$3.0 \quad 19$

60 Traitâ€based ecology of fishes: A quantitative assessment of literature trends and knowledge gaps using
5.3

29
61 Understanding rivers and their social relations: A critical step to advance environmental water
management. Wiley Interdisciplinary Reviews: Water, 2019, 6, el381.
6.5
127

62 Prepare river ecosystems for an uncertain future. Nature, 2019, 570, 301-303.
27.8

142
63 Does a bigger mouth make you fatter? Linking intraspecific gape variability to body condition of a tropical predatory fish. Oecologia, 2019, 191, 579-585. 2.0 13
Headwater Streams andÂWetlands are CriticalÂfor Sustaining Fish, Fisheries, and Ecosystem Services.
Fisheries, 2019, 44, 73-91. 0.8 110
64
Perceptions of a curriculum vitae clinic for conservation science students. Conservation Science and
$65 \quad$ Practice, 2019, 1, e37.
2.0 0Increasing drought favors nonnative fishes in a dryland river: evidence from a multispeciesdemographic model. Ecosphere, 2019, 10, e02681.
2.2

26

Phenotypic variability of rusty crayfish (<i>Faxonius rusticus</i>) at the leading edge of its riverine
2.4

20
invasion. Freshwater Biology, 2019, 64, 1196-1209.

Current and projected future risks of freshwater fish invasions in China. Ecography, 2019, 42,
4.5

23
2074-2083.

- 23

69 Understanding the Nexus Between Hydrological Alteration And Biological Invasions. , 2019, , 45-64.
10

Thermal landscapes in a changing climate: biological implications of water temperature patterns in an
Growth and Recruitment of Nonnative Smallmouth Bass along the Upstream Edge of Its Riverine
Distribution. Northwest Science, 2019, 93, 1.

Estimating the effects of nonâ€native species on nutrient recycling using speciesâ€specific and general allometric models. Freshwater Biology, 2018, 63, 539-552.

Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nature Sustainability, 2018, 1, 176-183.
23.7

76 Tracking the pulse of the Earthâ $€^{\mathrm{TM}}$ s fresh waters. Nature Sustainability, 2018, 1, 198-203.
23.7

63
Evidence for dispersal syndromes in freshwater fishes. Proceedings of the Royal Society B: Biological

Sciences, 2018, 285, 20172214. \quad| Global proliferation of small hydropower plants ấ" science and policy. Frontiers in Ecology and the |
| :--- |$\quad 2.6$

80 Drivers and interrelationships among multiple dimensions of rarity for freshwater fishes. Ecography, 2018, 41, 331-344.

4.5

16
81 Evaluating transferability of flowâ $E^{\prime \prime}$ ecology relationships across space, time and taxonomy.
Freshwater Biology, 2018, 63, 817-830. 2.443
83 The role of dispersal in river network metacommunities: Patterns, processes, and pathways.
Freshwater Biology, 2018, 63, 141-163.
Size-dependent foraging niches of European Perch Perca fluviatilis (Linnaeus, 1758) and North
82 Americ
82 Americ 1.0 1.0 9 9
84 Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast. GlobalChange Biology, 2018, 24, 1175-1185.9.533
Spatial heterogeneity contributes more to portfolio effects than species variability in86 bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285,2.6
Traits-based approaches support the conservation relevance of landscape genetics. Conservation Genetics, 2018, 19, 17-26. 1.5 8
85Fish dispersal in flowing waters: A synthesis of movementâ€ \bullet and geneticâ€based studies. Fish and Fisheries,2018, 19, 1063-1077.5.335Importance of harvestâ€driven trait changes for invasive species management. Frontiers in Ecology andthe Environment, 2018, 16, 317-318.
4.0 19
Trends and Knowledge Gaps in the Study of Nature-Based Participation by Latinos in the United States.
International Journal of Environmental Research and Public Health, 2018, 15, 1287. 2.6 8
91 Individualâ€based models forecast the spread and inform the management of an emerging riverine

95 | Global test of Eltonian niche conservatism of nonnative freshwater fish species between their native |
| :--- |
| and introduced ranges. Ecography, 2017, 40, 384-392. |

96 | Heads you win, tails you lose: Lifeâ€history traits predict invasion and extinction risk of the world's |
| :--- |
| freshwater fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27, 773-779. |

$97 \quad$| Linking river flow regimes to riparian plant guilds: a communityâ€wide modeling approach. Ecologica |
| :--- |
| Applications, 2017, 27, 1338-1350. |

$98 \quad$| Species invasions threaten the antiquity of China's freshwater fish fauna. Diversity and Distributions |
| :--- |
| 2017, 23, 556-566. |

99
100

Past, present, and future of ecological integrity assessment for fresh waters. Frontiers in Ecology and the Environment, 2017, 15, 197-205.

102 Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia, 2017, 184, 453-467.
2.0

31
103 Confronting the risks of large-scale invasive species control. Nature Ecology and Evolution, 2017, 1,
172 .

Climatic vulnerability of the worldâ $⿶^{\mathrm{TM}_{s}}$ freshwater and marine fishes. Nature Climate Change, 2017, 7,
18.8

217
Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems.
111 PLoS ONE, 2017, 12, e0176949.

112 Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and

Genetic Differentiation, Isolation-by-Distance, and Metapopulation Dynamics of the Arizona Treefrog
(Hyla wrightorum) in an Isolated Portion of Its Range. PLoS ONE, 2016, 11, e0160655.

Nonâ€native Chinese mystery snail (<i>Bellamya chinensis<|i>) supports consumers in urban lake food webs. Ecosphere, 2016, 7, e01293.
2.2

19
11

115 Food Web Theory and Ecological Restoration. , 2016, , 301-329.
116 Nonâ€ 2016,7, e016e introductions influence fish body size distributions within a dryland river. Ecosphere, 2016, 7, e01615.
Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. AquaticConservation: Marine and Freshwater Ecosystems, 2016, 26, 91-102.
$2.0 \quad 40$

Revealing the pathways by which agricultural landâ €use affects stream fish communities in South
119 Clobal Salmonidae introductions reveal stronger ecological effects of changing intraspecific 6.4 41 compared to interspecific diversity. Ecology Letters, 2016, 19, 1363-1371.Resource partitioning and functional diversity of worldwide freshwater fish communities.$120 \quad$ Ecosphere, 2016, 7, e01356.
2.2 33
121 Multiâ€trophic impacts of an invasive aquatic plant. Freshwater Biology, 2016, 61, 1846-1861. 2.4 25Environment and predation govern fish community assembly in temperate streams. Clobal Ecology and5.854
Biogeography, 2016, 25, 1194-1205.Global threats from invasive alien species in the twenty-first century and national response12.8

127	Human development modifies the functional composition of lake littoral invertebrate communities. Hydrobiologia, 2016, 775, 167-184.	2.0	17
128	Environmental Drivers of Occupancy and Detection of Olympic Mudminnow. Transactions of the American Fisheries Society, 2016, 145, 17-26.	1.4	9
129	Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution, 2016, 7, 388-397.	5.2	91
130	Phylogenetic species delimitation for crayfishes of the genus<i>Pacifastacus. Peerj, 2016, 4, el915.	2.0	29
131	Coupling virtual watersheds with ecosystem services assessment: a 21 st century platform to support river research and management. Wiley Interdisciplinary Reviews: Water, 2015, 2, 609-621.	6.5	29
132	Assessment of Introduced Prickly Sculpin Populations in Mountain Lakes in Two Areas of Western Washington State. Northwest Science, 2015, 89, 1-13.	0.2	2
133	Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science, 2015, 34, 399-409.	1.8	83
134	Lay summaries needed to enhance science communication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3585-3586.	7.1	84
135	Dispersal ability and habitat requirements determine landscapeâ€level genetic patterns in desert aquatic insects. Molecular Ecology, 2015, 24, 54-69.	3.9	76

145 Climate change effects on freshwater fishes, conservation and management. , 2015, , 76-106. 10
146 Challenges and opportunities for fish conservation in dam-impacted waters. , 2015, , 107-148. 44
147 Multiple stressor effects on freshwater fish: a review and meta-analysis. , 2015, , 178-214. 14
148 Non-indigenous fishes and their role in freshwater fish imperilment. , 2015, , 238-269. 10
149 Conservation of migratory fishes in freshwater ecosystems. , 2015, , 324-360. 30
150 Freshwater conservation planning. , 2015, , 437-466. 4
Understanding and conserving genetic diversity in a world dominated by alien introductions and
151 native transfers: the case study of primary and peripheral freshwater fishes in southern Europe. , 2015,, 506-534.
152 Synthesis â€" what is the future of freshwater fishes?. , 2015, , 563-572. 1
153 Spatial Scaling of Non-Native Fish Richness across the United States. PLoS ONE, 2014, 9, e97727. 2.5 15
Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams.
Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13894-13899. 7.1 283
154
Fish species introductions provide novel insights into the patterns and drivers of phylogenetic
structure in freshwaters. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133003.155
Generalized â€œavatarâ€•niche shifts improve distribution models for invasive species. Diversity and4.111
Distributions, 2014, 20, 1296-1306.
3.8100
The interactive effects of climate change, riparian management, and a nonnative predator on streamâ€rearing salmon. Ecological Applications, 2014, 24, 895-912. 157Practical Science Communication Strategies for Graduate Students. Conservation Biology, 2014, 28,4.762
1225-1235.
Quantifying flowâ€"ecology relationships with functional linear models. Hydrological Sciences
159
Journal, 2014, 59, 629-644.
Journal, 2014, 59, 629-644.2.638Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions. Invasive Plant Science and1.130
Management, 2014, 7, 32-45.Are largeâ€scale flow experiments informing the science and management of freshwater ecosystems?.4.0180
Frontiers in Ecology and the Environment, 2014, 12, 176-185. 161

163 | Ecology, management, and conservation implications of North American beaver <i> (Castor) Tj ETQq1 $10.784314 \mathrm{rgBT} /$ Overlock 10 - |
| :--- |
| $24,391-409$. |

Incentivizing the Public to Support Invasive Species Management: Eurasian Milfoil Reduces Lakefront
Property Values. PLoS ONE, 2014, 9, e110458.

166 Identifying Preservation and Restoration Priority Areas for Desert Fishes in an Increasingly Invaded

167	Multidecadal responses of native and introduced fishes to natural and altered flow regimes in the American Southwest. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 554-564.	1.4	67
168	Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology, 2013, 58, 50-62.	2.4	19
169	Effects of Climate Change, Invasive Species, and Disease on the Distribution of Native European Crayfishes. Conservation Biology, 2013, 27, 731-740.	4.7	72

A global assessment of freshwater fish introductions in mediterranean-climate regions.
2.0

60

Crayfish occupancy and abundance in lakes of the Pacific Northwest, USA. Freshwater Science, 2013,
$\begin{array}{ll} & \\ & \text { Craytish oct } \\ & 32,94-107 .\end{array}$
1.8

33

A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science, 2013, 32,
1367-1382.
1.8

207

Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic
Species. PLoS ONE, 2013, 8, e77415.
$2.5 \quad 67$

174 Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 2012, 93, 35-45.
3.2

253

175 Projected Climateâ€induced Habitat Loss for Salmonids in the John Day River Network, Oregon, U.S.A..
Conservation Biology, 2012, 26, 873-882.

Merging connectivity rules and largeâ€scale condition assessment improves conservation adequacy in
$176 \quad \begin{aligned} & \text { Merging connectivity rules and largeấscale condition assessmen } \\ & \text { river systems. Journal of Applied Ecology, 2012, 49, 1036-1045. }\end{aligned}$
4.0

84

Costs of living for juvenile Chinook salmon (<i> Oncorhynchus tshawytscha</i>) in an increasingly
warming and invaded world. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1621-1630.
1.4

39

Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the
Environment, 2012, 10, 249-257.
4.0

402

Native invaders $\hat{\text { é" challenges for science, management, policy, and society. Frontiers in Ecology and }}$
the Environment, 2012, 10, 373-381.
4.0

208
181 Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: 2.6 162
Biological Sciences, 2012, 279, 4772-4777.

Prey naivety in the behavioural responses of juvenile Chinook salmon (<i> Oncorhynchus) Tj ETQq1 10.784314 rgB ${ }_{2.4}$ OVverlock $_{28} 10$ Tf 5
183 Prey naivety in the behavioural responses of juvenile Chinook salmon (<i>Oncorhynchus) Tj ETQq1 10.784314 rgB 2. $_{4} \mathrm{Overlock}_{28} 10 \mathrm{Tf} 5$
Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the
Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States
Depend on Efficiency and Policy Measures. PLoS ONE, 2012, 7, e50219.A framework for hydrologic classification with a review of methodologies and applications inecohydrology. Ecohydrology, 2012, 5, 503-518.
187 The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of <i>Pacifastacus leniusculus</i>. Freshwater Biology, 2012, 57, 1823-1838. 2.4
188 Spatiotemporal patterns and habitat associations of smallmouth bass (<i>Micropterus dolomieu</i>)
Using avatar species to model the potential distribution of emerging invaders. Global Ecology and5.843

Assessing transferability of ecological models: an underappreciated aspect of statistical validation.

Assessing transferability of ecological models: an underappreciated aspect of statistical validation. 190 Methods in Ecology and Evolution, 2012, 3, 260-267. 190 Methods in Ecology and Evolution, 2012, 3, 260-267.
5.2
5.2 439 439
Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape 4.2 114
$191 \begin{aligned} & \text { Characterizing connectivity r } \\ & \text { Ecology, 2012, 27, 303-317. }\end{aligned}$
192 Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). , 2011, 21, 2587-2599.41
193 Defining conservation priorities for freshwater fishes according to taxonomic, functional, and 135 phylogenetic diversity., 2011, 21, 3002-3013.Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in4.935a Changing Climate. BioScience, 2011, 61, 713-719.A broad framework to organize and compare ecological invasion impacts. Environmental Research,7.5742011, 111, 899-908.Development and assessment of a landscape-scale ecological threat index for the Lower Colorado
199 The Potential Conservation Value of Non-Native Species. Conservation Biology, 2011, 25, 428-437.

4.7

597

200 Ecological Impacts of Nonnative Freshwater Fishes. Fisheries, 2011, 36, 215-230.
0.8

447
201 The State of Crayfish in the Pacific Northwest. Fisheries, 2011, 36, 60-73. 0.8

60

202 Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, 2011, 9,

204 National parks as protected areas for U.S. freshwater fish diversity. Conservation Letters, 2011, 4, 364-371.
5.7

61

205 Smallmouth Bass in the Pacific Northwest: A Threat to Native Species; a Benefit for Anglers. Reviews in Fisheries Science, 2011, 19, 305-315.
2.1

63

206 Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies. River Research and Applications, 2010, 26, 137-156.

207 Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod. Ecosphere, 2010, 1, 1-13.
2.2

50

208 Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605.
2.4

45
Latent Extinction and Invasion Risk of Crayfishes in the Southeastern United States. Conservation
Biology, 2010, 24, 1099-1110.

210 Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions, 2010, 16, 496-513.
4.1

303
211 Incorporating thermal regimes into environmental flows assessments: modifying dam operations to
2.4

724 restore freshwater ecosystem integrity. Freshwater Biology, 2010, 55, 86-107.

The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 2010, 55, 147-170.
2.4

1,227

Classification of natural flow regimes in Australia to support environmental flow management.
213 Freshwater Biology, 2010, 55, 171-193.
2.4

416

214 Process-based Principles for Restoring River Ecosystems. BioScience, 2010, 60, 209-222.
4.9

575

215 Environmental drivers of fish functional diversity and composition in the Lower Colorado River
Basin. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1791-1807.
1.4

93

\#	Article	IF	Citations
217	First record of Orconectes rusticus (Girard, 1852) (Decapoda, Cambaridae) west of the Great Continental Divide in North America. Crustaceana, 2009, 82, 1347-1351.	0.3	16
218	Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis). Aquatic Ecology, 2009, 43, 1073-1084.	1.5	31
219	Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography, 2009, 36, 1899-1912.	3.0	101
220	Behavioural and growth differences between experienced and na $\tilde{A}^{-} v e$ populations of a native crayfish in the presence of invasive rusty crayfish. Freshwater Biology, 2009, 54, 1876-1887.	2.4	19
221	Freshwaters in the Public Eye: Understanding the Role of Images and Media in Aquatic Conservation. Fisheries, 2009, 34, 581-585.	0.8	40
222	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	4.0	74
223	Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 2008, 17, 25-37.	5.8	81
224	Assessing the Effects of Climate Change on Aquatic Invasive Species. Conservation Biology, 2008, 22, 521-533.	4.7	944
225	The varying role of population abundance in structuring indices of biotic homogenization. Journal of Biogeography, 2008, 35, 884-892.	3.0	29
226	TRAIT SYNERGISMS AND THE RARITY, EXTIRPATION, AND EXTINCTION RISK OF DESERT FISHES. Ecology, 2008, 89, 847-856.	3.2	129
227	Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 2008, 6, 357-363.	4.0	457
228	Flow variability and the biophysical vitality of river systems. Comptes Rendus - Geoscience, 2008, 340, 629-643.	1.2	206
229	Machine Learning Methods Without Tears: A Primer for Ecologists. Quarterly Review of Biology, 2008, 83, 171-193.	0.1	561
230	A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1512-1522.	1.4	273
231	Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5732-5737.	7.1	1,172
232	Critical threshold effects of benthiscape structure on stream herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 461-472.	4.0	17
233	Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment, 2007, 5, 153-160.	4.0	199

Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and
\square
LIFE-HISTORY STRATEGIES PREDICT FISH INVASIONS AND EXTIRPATIONS IN THE COLORADO RIVER BASIN.
Ecological Monographs, 2006, $76,25-40$.Placing global stream flow variability in geographic and geomorphic contexts. River Research and$241 \quad$ Applications, 2006, 22, 149-166.
243 Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North
\square

253	A Species-Specific Approach to Modeling Biological Communities and Its Potential for Conservation. Conservation Biology, 2003, 17, 854-863.	4.7	75
254	Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 2003, 19, 101-121.	1.7	880
255	Toward a Mechanistic Understanding and Prediction of Biotic Homogenization. American Naturalist, 2003, 162, 442-460.	2.1	408
256	Predictive Models of Fish Species Distributions: A Note on Proper Validation and Chance Predictions. Transactions of the American Fisheries Society, 2002, 131, 329-336.	1.4	159
257	A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology, 2002, 47, 1976-1995.	2.4	205
258	What controls who is where in freshwater fish communities $\hat{A}-$ the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 157-170.	1.4	751
259	Cross-correlation bias in lag analysis of aquatic time series. Marine Biology, 2001, 138, 1063-1070.	1.5	63
260	Spatial isolation and fish communities in drainage lakes. Oecologia, 2001, 127, 572-585.	2.0	141
261	Fishâ€"Habitat Relationships in Lakes: Gaining Predictive and Explanatory Insight by Using Artificial Neural Networks. Transactions of the American Fisheries Society, 2001, 130, 878-897.	1.4	107
262	Torturing data for the sake of generality: How valid are our regression models?. Ecoscience, 2000, 7, 501-510.	1.4	121
263	Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?. NeoBiota, 0, 22, 1-22.	1.0	37
264	The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota, 0, 37, 23-36.	1.0	117
265	Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia, 0, , 1.	2.0	2

[^0]: Source: https://exaly.com/author-pdf/8206918/publications.pdf
 Version: 2024-02-01

