Julian D Olden

List of Publications by Year

 in descending order[^0]

The ecological limits of hydrologic alteration（ELOHA）：a new framework for developing regional environmental flow standards．Freshwater Biology，2010，55，147－170．

Assessing the Effects of Climate Change on Aquatic Invasive Species．Conservation Biology，2008，22，

6 Redundancy and the choice of hydrologic indices for characterizing streamflow regimes．River
Research and Applications，2003，19，101－121．
1.7

6．Global threats from invasive alien species in the twenty－first century and national response capacities．Nature Communications，2016，7， 12485.

What controls who is where in freshwater fish communities \hat{A}－the roles of biotic，abiotic，and spatial
$9 \quad$ factors．Canadian Journal of Fisheries and Aquatic Sciences，2001，58，157－170．

Incorporating thermal regimes into environmental flows assessments：modifying dam operations to restore freshwater ecosystem integrity．Freshwater Biology，2010，55，86－107．11 Functional trait niches of North American lotic insects：traits－based ecological applications in light $\begin{aligned} & \text { of phylogenetic relationships．Journal of the North American Benthological Society，2006，25，730－755．}\end{aligned}$Functional trait niches of North American lotic insects：traits－based ecological applications in light
of phylogenetic relationships．Journal of the North American Benthological Society，2006，25，730－755．12 The Potential Conservation Value of Non－Native Species．Conservation Biology，2011，25，428－437．4.7597
13 Process－based Principles for Restoring River Ecosystems．BioScience，2010，60，209－222． 4.9 5755.8570
Machine Learning Methods Without Tears：A Primer for Ecologists．Quarterly Review of Biology，2008， 0.1 561
83，171－193．

19	Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 2006, 33, 2027-2039.	3.0	444
20	Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution, 2012, 3, 260-267.	5.2	439
21	Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 2010, 55, 171-193.	2.4	416
22	Toward a Mechanistic Understanding and Prediction of Biotic Homogenization. American Naturalist, 2003, 162, 442-460.	2.1	408
23	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	4.0	402
24	LIFE-HISTORY STRATEGIES PREDICT FISH INVASIONS AND EXTIRPATIONS IN THE COLORADO RIVER BASIN. Ecological Monographs, 2006, 76, 25-40.	5.4	382
25	Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography, 2007, 16, 694-701.	5.8	311

26	Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions, 2010, 16, 496-513.	4.1	303
27	Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13894-13899.	7.1	283
28	A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1512-1522.	1.4	273
29	The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 2018, 63, 141-163.	2.4	273

```
N3 Native invaders â€"challenges for science, management, policy, and society. Frontiers in Ecology and
    the Environment, 2012, 10, 373-381.
```

A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science, 2013, 32,
1367-1382.

Flow variability and the biophysical vitality of river systems. Comptes Rendus - Geoscience, 2008, 340,
629-643.
1.2

206

```
l A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology,
```

2.4
205

Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment, 2007, 5, 153-160.
4.0

199

Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies.
Fish assemblages respond to altered f
Freshwater Biology, 2013, 58, 50-62.
2.4

198

Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the
40 Environment, 2012, 10, 20-28.
4.0

195

> Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, $2018,2,86-93$.

Are largeâ€scale flow experiments informing the science and management of freshwater ecosystems?.
Frontiers in Ecology and the Environment, 2014, 12, 176-185.
4.0

180
Dispersal strength determines metaâ€community structure in a dendritic riverine network. Journal of
Biogeography, 2015, 42, 778-790.

44 Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications, 2006, 22, 149-166.

ECOLOGICAL PROCESSES DRIVING BIOTIC HOMOGENIZATION: TESTING A MECHANISTIC MODEL USING FISH 3.2
FAUNAS. Ecology, 2004, 85, 1867-1875.

Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B:
Biological Sciences, 2012, 279, 4772-4777.
2.6

162
Predictive Models of Fish Species Distributions: A Note on Proper Validation and Chance Predictions.
$47 \quad$ Transactions of the American Fisheries Society, 2002, 131, 329-336.

Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology, 2006, 51, 224-235.

Designing flows to resolve human and environmental water needs in a dam-regulated river. Nature
Communications, 2017, 8, 2158.
12.8

144

50 Large-scale Flow Experiments for Managing River Systems. BioScience, 2011, 61, 948-959.
4.9

142

51 Prepare river ecosystems for an uncertain future. Nature, 2019, 570, 301-303.
27.8

142

[^1]55
56

Understanding rivers and their social relations: A critical step to advance environmental water management. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1381.
PREDICTING OCCURRENCES AND IMPACTS OF SMALLMOUTH BASS INTRODUCTIONS IN NORTH TEMPERATE
LAKES. , 2004, 14, 132-148.

59	Torturing data for the sake of generality: How valid are our regression models?. Ecoscience, 2000, 7, 501-510.	1.4	121
60	The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (U.S.A.) over the past 130Âyears. Biological Invasions, 2006, 8, 1621-1628.	2.4	121
61	The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota, 0, 37, 23-36.	1.0	117

62	Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology, 2012, 27, 303-317.	4.2	114
63	Headwater Streams andÂWetlands are CriticalÂfor Sustaining Fish, Fisheries, and Ecosystem Services. Fisheries, 2019, 44, 73-91.	0.8	110
64	Fishâ€"Habitat Relationships in Lakes: Gaining Predictive and Explanatory Insight by Using Artificial Neural Networks. Transactions of the American Fisheries Society, 2001, 130, 878-897.	1.4	107
65	Contextâ€dependent perceptual ranges and their relevance to animal movements in landscapes. Journal of Animal Ecology, 2004, 73, 1190-1194.	2.8	102
66	Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Global Change Biology, 2017, 23, 728-736.	9.5	102
67	Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography, 2009, 36, 1899-1912.	3.0	101

68 The interactive effects of climate change, riparian management, and a nonnative predator on
3.8

73	Predicting invasiveness of species in trade: climate match, trophic guild and fecundity influence establishment and impact of nonâ€native freshwater fishes. Diversity and Distributions, 2016, 22, 148-160.	4.1	91
74	Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution, 2016, 7, 388-397.	5.2	91
75	Merging connectivity rules and largeâ€scale condition assessment improves conservation adequacy in river systems. Journal of Applied Ecology, 2012, 49, 1036-1045.	4.0	84
76	Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions, 2012, 18, 366-376.	4.1	84
77	Lay summaries needed to enhance science communication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3585-3586.	7.1	84
78	Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. Ecological Indicators, 2011, 11, 304-310.	6.3	83
79	Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science, 2015, 34, 399-409.	1.8	83
80	Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Frontiers in Ecology and the Environment, 2020, 18, 520-528.	4.0	83
81	Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 2008, 17, 25-37.	5.8	81
82	Revealing the pathways by which agricultural landâ€use affects stream fish communities in South Brazilian grasslands. Freshwater Biology, 2016, 61, 1921-1934.	2.4	81
83	Ecology, management, and conservation implications of North American beaver <i> (Castor) Tj ETQq1 10.78 24, 391-409.	$\begin{gathered} \text { rgBT } \\ 2.0 \end{gathered}$	$\begin{gathered} \text { erloc } \\ 78 \end{gathered}$

84 Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, 2011, 9, 569-574.
4.0

77

85 | Dispersal ability and habitat requirements determine landscapeâ€level genetic patterns in desert aquatic |
| :--- |
| insects. Molecular Ecology, 2015, 24, 54-69. |

86 A Species-Specific Approach to Modeling Biological Communities and Its Potential for Conservation. Conservation Biology, 2003, 17, 854-863.

Projected Climateâ€induced Habitat Loss for Salmonids in the John Day River Network, Oregon, U.S.A..
A broad framework to
2011, 111, 899-908. 7.5
95
Multidecadal responses of native and introduced fishes to natural and altered flow regimes in the
American Southwest. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 554-564.
1.4
7.8
71
96 Declining streamflow induces collapse and replacement of native fish in the American Southwest.
Frontiers in Ecology and the Environment, 2016, 14, 465-472.
4.0
67
Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic
Species. PLoS ONE, 2013, 8, e77415.

98 Can dams be designed for sustainability?. Science, 2017, 358, 1252-1253.
12.6

65

99 Cross-correlation bias in lag analysis of aquatic time series. Marine Biology, 2001, 138, 1063-1070.
1.5

63

100 Smallmouth Bass in the Pacific Northwest: A Threat to Native Species; a Benefit for Anglers. Reviews in
Fisheries Science, 2011, 19, 305-315.
2.1

63

101 Tracking the pulse of the Earthâ $€^{\text {TM }}$ S fresh waters. Nature Sustainability, 2018, 1, 198-203.
23.7

63

102 Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary
Reviews: Water, 2020, 7, el436.
6.5

63
103 Practical Science Communication Strategies for Graduate Students. Conservation Biology, 2014, 28,
1225-1235.

Heads you win, tails you lose: Lifeâ€history traits predict invasion and extinction risk of the world's freshwater fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27, 773-779.
2.0

62

National parks as protected areas for U.S. freshwater fish diversity. Conservation Letters, 2011, 4,

5.7

61
105 364-371.

106 The State of Crayfish in the Pacific Northwest. Fisheries, 2011, 36, 60-73.
0.8

60

> A global assessment of freshwater fish introductions in mediterranean-climate regions.
> Hydrobiologia, 2013, 719, 317-329.
2.0

60

Environment and predation govern fish community assembly in temperate streams. Clobal Ecology and

111 Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States.

113	Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200777.	2.6	52
114	Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North America. Conservation Biology, 2006, 20, 1740-1749.	4.7	51
115	Linking river flow regimes to riparian plant guilds: a communityâ€wide modeling approach. Ecological Applications, 2017, 27, 1338-1350.	3.8	51

119 The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of <i>Pacifastacus leniusculus</i>. Freshwater Biology, 2012, 57, 1823-1838.120 Whatâ $€^{\text {TM }}$ s in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams.
\squareClimate and land-use changes interact to drive long-term reorganization of riverine fish communities
123 The Human Dimensions of Biotic Homogenization. Conservation Biology, 2005, 19, 2036-2038. 4.7 48

Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.

127	Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605.	2.4
128	Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nature Sustainability, 2021, 4, 409-416.	23.7
129	Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. Journal of Applied Ecology, 2015, 52, 366-378.	4.0
130	Challenges and opportunities for fish conservation in dam-impacted waters. , 2015, , 107-148.	
131	Past, present, and future of ecological integrity assessment for fresh waters. Frontiers in Ecology and the Environment, 2017, 15, 197-205.	4.0
132	Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography, 2012, 21, 1114-1125.	5.8
133	Evaluating transferability of flowâ€"ecology relationships across space, time and taxonomy. Freshwater Biology, 2018, 63, 817-830.	2.4
134	Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions, 2007, 13, 458-466.	4.1
135	Case studies in co-benefits approaches to climate change mitigation and adaptation. Journal of Environmental Planning and Management, 2017, 60, 647-667.	4.5
136	Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE, 2018, 13, e0192538.	2.5

137 Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). , 2011, 21, 2587-2599. 41
Global Salmonidae introductions reveal stronger ecological effects of changing intraspecific compared to interspecific diversity. Ecology Letters, 2016, 19, 1363-1371. 6.4 41
1380.840
Freshwaters in the Public Eye: Understanding the Role of Images and Media in Aquatic Conservation. 139 Fisheries, 2009, 34, 581-585.2.040Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. AquaticConservation: Marine and Freshwater Ecosystems, 2016, 26, 91-102.
1.4
Costs of living for juvenile Chinook salmon (<i> Oncorhynchus tshawytscha</i>) in an increasingly
warming and invaded world. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1621-1630. 39
141 1.4
Quantifying flowâ€"ecology relationships with functional linear models. Hydrological Sciences

\#	Article	IF	Citations
145	Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology, 2015, 96, 1371-1382.	3.2	36
146	Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change. Clobal Change Biology, 2017, 23, 1871-1880.	9.5	36
147	Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate. BioScience, 2011, 61, 713-719.	4.9	35
148	Fish dispersal in flowing waters: A synthesis of movementâ€•and geneticâ€based studies. Fish and Fisheries, 2018, 19, 1063-1077.	5.3	35
149	Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia, 2021, 848, 1967-1979.	2.0	34
150	Crayfish occupancy and abundance in lakes of the Pacific Northwest, USA. Freshwater Science, 2013, 32, 94-107.	1.8	33
151	Resource partitioning and functional diversity of worldwide freshwater fish communities. Ecosphere, 2016, 7, e01356.	2.2	33
152	Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast. Global Change Biology, 2018, 24, 1175-1185.	9.5	33
153	Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. Science of the Total Environment, 2021, 770, 145318.	8.0	33
154	Comparison of trophic function between the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii. Limnology, 2017, 18, 275-286.	1.5	32
155	Designing flow regimes to support entire river ecosystems. Frontiers in Ecology and the Environment, 2021, 19, 326-333.	4.0	32
156	Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis). Aquatic Ecology, 2009, 43, 1073-1084.	1.5	31
157	Nonâ€native species promote trophic dispersion of food webs. Frontiers in Ecology and the Environment, 2012, 10, 406-408.	4.0	31
158	Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia, 2017, 184, 453-467.	2.0	31
159	Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180915.	2.6	31
160	Spatiotemporal patterns and habitat associations of smallmouth bass (<i>Micropterus dolomieu</i>) invading salmonâ€erearing habitat. Freshwater Biology, 2012, 57, 1929-1946.	2.4	30
161	Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions. Invasive Plant Science and Management, 2014, 7, 32-45.	1.1	30

An invader in salmonid rearing habitat: current and future distributions of smallmouth bass
(<i>Micropterus dolomieu</i>) in the Columbia River Basin. Canadian Journal of Fisheries and Aquatic

Sciences, 2020, 77, 314-325. \quad	163

Prey naivety in the behavioural responses of juvenile Chinook salmon (<i>Oncorhynchus) Tj ETQq0 00 rgBT /Overlock 10 Tf 50542 Td

169	Individualâ€based models forecast the spread and inform the management of an emerging riverine invader. Diversity and Distributions, 2018, 24, 1816-1829.	4.1	28
170	Incentivizing the Public to Support Invasive Species Management: Eurasian Milfoil Reduces Lakefront Property Values. PLoS ONE, 2014, 9, el10458.	2.5	28
171	RivFishTIME: A global database of fish timeâ€series to study global change ecology in riverine systems. Global Ecology and Biogeography, 2021, 30, 38-50.	5.8	27

```
181
Beaver dams shift desert fish assemblages toward dominance by nonâ€native species (Verde River,) Tj ETQq1 1 0.784314 rgBT/Overl
```

182 Phenotypic variability of rusty crayfish (<i>Faxonius rusticus</i>) at the leading edge of its riverine
Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States 185 Energy, Water and Fish: Biodiversity impacts of Energy-Sector Water Den $2.5 \quad 19$
186 Nonâ€native Chinese mystery snail (<i>Bellamya chinensis</i>) supports consumers in urban lake foodwebs. Ecosphere, 2016, 7, e01293.$2.2 \quad 19$
Global test of Eltonian niche conservatism of nonnative freshwater fish species between their native and introduced ranges. Ecography, 2017, 40, 384-392. 4.5 19
Models of Ecological Responses to Flow Regime Change to Inform Environmental Flows Assessments.19
, 2017, , 287-316. 188
Importance of harvestâ€driven trait changes for invasive species management. Frontiers in Ecology and
the Environment, 2018, 16, 317-318.
4.0 19
Dynamic contributions of intermittent and perennial streams to fish beta diversity in dryland rivers.$190 \begin{aligned} & \text { Dynamic contributions of intermittent and peren } \\ & \text { Journal of Biogeography, 2019, 46, 2311-2322. }\end{aligned}$
3.0 19
Riparian land use and in-channel stressors
Landscape Ecology, 2021, 36, 3079-3095.
4.2 19
192 Ecology and Conservation of Mudminnow Species Worldwide. Fisheries, 2014, 39, 341-351. 0.8 18
193 There's more to Fish than Just Food: Exploring the Diverse Ways that Fish Contribute to Human 0.8 18
Society. Fisheries, 2020, 45, 453-464.199 Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United

$200 \quad \begin{aligned} & \text { Scale-dependent patter } \\ & \text { 2020, } 847,3759-3772 .\end{aligned}$

201 Preface: aquatic homogenoceneâ€"understanding the era of biological re-shuffling in aquatic
2.0
ecosystems. Hydrobiologia, 2020, 847, 3705-3709.
17

202 Negative impacts of mining on Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .
1.0

17

203 Mechanistic invasive species management models and their application in conservation. Conservation
$2.0 \quad 17$

204 First record of Orconectes rusticus (Girard, 1852) (Decapoda, Cambaridae) west of the Great Continental Divide in North America. Crustaceana, 2009, 82, 1347-1351.
0.3

16205 Hydrology drives seasonal variation in dryland stream macroinvertebrate communities. AquaticSciences, 2017, 79, 705-717.
206 Drivers and interrelationships among multiple dimensions of rarity for freshwater fishes. Ecography, 2018, 41, 331-344.
207 Climate Change Effects on North American Fish and Fisheries to Inform Adaptation Strategies. Fisheries, 2021, 46, 449-464.
208 Applying assessments of adaptive capacity to inform naturalâ $€$ resource management in a changingclimate. Conservation Biology, 2022, 36, .
$4.7 \quad 16$
209 Spatial Scaling of Non-Native Fish Richness across the United States. PLoS ONE, 2014, 9, e97727.15
210 Use of environmental DNA to detect the invasive aquatic plants <i>Myriophyllum spicatum</i> and1.815<i>Egeria densa</i> in lakes. Freshwater Science, 2020, 39, 521-533.211 Why are freshwater fish so threatened?. , 2015, , 37-75.14
212 Multiple stressor effects on freshwater fish: a review and meta-analysis. , 2015, , 178-214. 14
213 Food Web Theory and Ecological Restoration. , 2016, , 301-329. 13Does a bigger mouth make you fatter? Linking intraspecific gape variability to body condition of a

\#	Article	IF	Citations
217	Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wetâ $€$ "dry tropics of northern Australia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1397-1411.	2.0	12
218	Widespread Distribution of the Non-Native Northern Crayfish (<i>Orconectes virilis</i>) in the Columbia River Basin. Northwest Science, 2010, 84, 108-111.	0.2	11
219	Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133003.	2.6	11
220	Generalized â€œavatarâ€•niche shifts improve distribution models for invasive species. Diversity and Distributions, 2014, 20, 1296-1306.	4.1	11
221	Phenotypic Shifts in Life History Traits Influence Invasion Success of Goldfish in the Yarlung Tsangpo River, Tibet. Transactions of the American Fisheries Society, 2015, 144, 602-609.	1.4	11
222	Spatiotemporal Spawning Patterns of Smallmouth Bass at Its Upstream Invasion Edge. Transactions of the American Fisheries Society, 2016, 145, 693-702.	1.4	11
223	Small instream infrastructure: Comparative methods and evidence of environmental and ecological responses. Ecological Solutions and Evidence, 2020, 1, el2026.	2.0	11
224	Detecting Montane Flowering Phenology with CubeSat Imagery. Remote Sensing, 2020, 12, 2894.	4.0	11
225	The Future of Legislation, Policy, Risk Analysis, and Management of Non-Native Freshwater Fishes in China. Reviews in Fisheries Science and Aquaculture, 2021, 29, 149-166.	9.1	11
226	Multi-scale threat assessment of riverine ecosystems in the Colorado River Basin. Ecological Indicators, 2022, 138, 108840.	6.3	11
227	Identifying Preservation and Restoration Priority Areas for Desert Fishes in an Increasingly Invaded World. Environmental Management, 2013, 51, 631-641.	2.7	10
228	Climate change effects on freshwater fishes, conservation and management. , 2015, , 76-106.		10
229			10

230 Understanding the Nexus Between Hydrological Alteration And Biological Invasions. , 2019, , 45-64. 10
231 Science Gets Up to Speed on Dry Rivers. Eos, 2020, 101, . 0.1 10Modeling the freshwater ecological response to changes in flow and thermal regimes influenced byreservoir dynamics. Journal of Hydrology, 2022, 608, 127591.
23-37.

235 Traits-based approaches support the conservation relevance of landscape genetics. Conservation Genetics, 2018, 19, 17-26.

Trends and Knowledge Gaps in the Study of Nature-Based Participation by Latinos in the United States. International Journal of Environmental Research and Public Health, 2018, 15, 1287.
$2.6 \quad 8$

Threats to Rearing Juvenile Chinook Salmon from Nonnative Smallmouth Bass Inferred from Stable Isotope and Fatty Acid Biomarkers. Transactions of the American Fisheries Society, 2020, 149, 350-363.

Coâ€development of a risk assessment strategy for managed relocation. Ecological Solutions and Evidence, 2021, 2, el2092.

Links between two interacting factors, novel habitats and non-native predators, and aquatic invertebrate communities in a dryland environment. Hydrobiologia, 2015, 746, 313-326.
2.0

Nonâ€ native introductions influence fish body size distributions within a dryland river. Ecosphere, 2016, 7, e01615.

Looking to the past to ensure the future of the world's oldest living vertebrate: Isotopic evidence for
241 multiâ€decadal shifts in trophic ecology of the Australian lungfish. River Research and Applications, 2019, 35, 1629-1639.

Development of a quantitative PCR assay for detecting Egeria densa in environmental DNA samples. Conservation Genetics Resources, 2020, 12, 545-548.

Stewardship and management of freshwater ecosystems: From Leopold's land ethic to a freshwater ethic. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1499-1511.

How do changes in flow magnitude due to hydropower operations affect fish abundance and biomass in temperate regions? A systematic review. Environmental Evidence, 2022, 11, 3.

245 Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China. Diversity, 2022, 14, 476.

Substantial intraspecific trait variation across a hydrological gradient in northern Australian fishes. Ecosphere, 2022, 13, .

Knowledge Exchange and Social Capital for Freshwater Ecosystem Assessments. BioScience, 2020, 70, 174-183.

Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology, 2021, 14, e2282.

A bobberâ $€^{T M}$ s perspective on angler-driven vectors of invasive species transmission. NeoBiota, 0,60 ,
97-115.
1.0

5

250 Freshwater conservation planning. , 2015, , 437-466.
4

Understanding and conserving genetic diversity in a world dominated by alien introductions and
251 native transfers: the case study of primary and peripheral freshwater fishes in southern Europe. , 2015, , 506-534.
257 Growth and Recruitment of Nonnative Smallmouth Bass along the Upstream Edge of Its Riverine 0.2 3
Distribution. Northwest Science, 2019, 93, 1.Assessment of Introduced Prickly Sculpin Populations in Mountain Lakes in Two Areas of WesternWashington State. Northwest Science, 2015, 89, 1-13$0.2 \quad 2$
Military Flights Threaten the Wilderness Soundscapes of the Olympic Peninsula, Washington.
Northwest Science, 2020, 94, 0.2 2
Trophic Ecology of Olympic Mudminnow (Novumbra hubbsi) in Lake Ozette, Washington. NorthwestScience, 2018, 92, 267.$0.2 \quad 2$
RESPONSE OF MIGRATORY SCULPIN POPULATIONS TO BARRIER REMOVAL IN FOUR SMALL LOWLAND URBAN STREAMS IN THE LAKE WASHINGTON BASIN. , 2020, 101, 111. 2
Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia, 0, , 1.
4.0

$$
4.0
$$ 2

263 Courseâ€based undergraduate research to advance environmental education, science, and resourcemanagement. Frontiers in Ecology and the Environment, 0, , .

264 Synthesis â€" what is the future of freshwater fishes?. , 2015, , 563-572.
265 A stakeholderâ€supported conservation assessment for a dataâ€limited species: Olympic mudminnow () Tj ETQq1 1.8 .784314 rgBT /

Perceptions of a curriculum vitae clinic for conservation science students. Conservation Science and

[^0]: Source: https://exaly.com/author-pdf/8206918/publications.pdf
 Version: 2024-02-01

[^1]: 53
 Defining conservation priorities for freshwater fishes according to taxonomic, functional, and
 phylogenetic diversity., 2011, $21,3002-3013$.

