Boguang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206830/publications.pdf

Version: 2024-02-01

ROCHANC YANG

#	Article	IF	CITATIONS
1	Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. ACS Nano, 2017, 11, 5474-5488.	14.6	247
2	A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials, 2014, 35, 5679-5688.	11.4	159
3	Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Science Translational Medicine, 2020, 12, .	12.4	147
4	Ultrafast Selfâ€Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Advanced Functional Materials, 2021, 31, 2102583.	14.9	146
5	Adaptable Hydrogels Mediate Cofactorâ€Assisted Activation of Biomarkerâ€Responsive Drug Delivery via Positive Feedback for Enhanced Tissue Regeneration. Advanced Science, 2018, 5, 1800875.	11.2	141
6	Organic Semiconducting Polymer Nanoparticles for Photoacoustic Labeling and Tracking of Stem Cells in the Second Near-Infrared Window. ACS Nano, 2018, 12, 12201-12211.	14.6	127
7	Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. Science Advances, 2021, 7, .	10.3	118
8	Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020, 232, 119684.	11.4	96
9	Development of Electrically Conductive Doubleâ€Network Hydrogels via Oneâ€Step Facile Strategy for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 474-488.	7.6	92
10	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	12.8	92
11	Zwitterionic-Modified Starch-Based Stealth Micelles for Prolonging Circulation Time and Reducing Macrophage Response. ACS Applied Materials & Interfaces, 2016, 8, 4385-4398.	8.0	86
12	Immunoregulation of macrophages by dynamic ligand presentation via ligand–cation coordination. Nature Communications, 2019, 10, 1696.	12.8	84
13	Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability. ACS Applied Materials & Interfaces, 2016, 8, 15710-15723.	8.0	77
14	Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nature Communications, 2021, 12, 7162.	12.8	70
15	Hydroxyapatite Crystal Formation in the Presence of Polysaccharide. Crystal Growth and Design, 2016, 16, 1247-1255.	3.0	68
16	Physically crosslinked poly(vinyl alcohol)–carrageenan composite hydrogels: pore structure stability and cell adhesive ability. RSC Advances, 2015, 5, 78180-78191.	3.6	67
17	A thermoresponsive poly(N-vinylcaprolactam-co-sulfobetaine methacrylate) zwitterionic hydrogel exhibiting switchable anti-biofouling and cytocompatibility. Polymer Chemistry, 2015, 6, 3431-3442.	3.9	65
18	RoY Peptide-Modified Chitosan-Based Hydrogel to Improve Angiogenesis and Cardiac Repair under Hypoxia. ACS Applied Materials & Interfaces, 2015, 7, 6505-6517.	8.0	62

BOGUANG YANG

#	Article	IF	CITATIONS
19	Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydrate Polymers, 2017, 177, 86-96.	10.2	62
20	Microscopic local stiffening in a supramolecular hydrogel network expedites stem cell mechanosensing in 3D and bone regeneration. Materials Horizons, 2021, 8, 1722-1734.	12.2	62
21	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	12.8	60
22	One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Materials, 2018, 10, e455-e455.	7.9	59
23	Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Advanced Functional Materials, 2018, 28, 1802642.	14.9	58
24	<i>lota</i> â€carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adiposeâ€derived MSCs <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1498-1510.	3.4	54
25	Highly Dynamic Nanocomposite Hydrogels Selfâ€Assembled by Metal Ionâ€Ligand Coordination. Small, 2019, 15, e1900242.	10.0	45
26	An In Situ Reversible Heterodimeric Nanoswitch Controlled by Metalâ€Ion–Ligand Coordination Regulates the Mechanosensing and Differentiation of Stem Cells. Advanced Materials, 2018, 30, e1803591.	21.0	44
27	Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture. Carbohydrate Polymers, 2021, 273, 118547.	10.2	42
28	A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells. Biomaterials Science, 2020, 8, 3173-3185.	5.4	41
29	A Biomimetic Poly(vinyl alcohol)–Carrageenan Composite Scaffold with Oriented Microarchitecture. ACS Biomaterials Science and Engineering, 2016, 2, 544-557.	5.2	40
30	Zwitterionic starch-based hydrogel for the expansion and "stemness―maintenance of brown adipose derived stem cells. Biomaterials, 2018, 157, 149-160.	11.4	39
31	Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensingâ€Đependent Differentiation of Stem Cells. Advanced Functional Materials, 2019, 29, 1806822.	14.9	38
32	An anti-oxidative and conductive composite scaffold for cardiac tissue engineering. Composites Part B: Engineering, 2020, 199, 108285.	12.0	32
33	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	10.2	32
34	Stable and pH-responsive polyamidoamine based unimolecular micelles capped with a zwitterionic polymer shell for anticancer drug delivery. RSC Advances, 2016, 6, 17728-17739.	3.6	31
35	Citrate-based fluorophore-modified cellulose nanocrystals as a biocompatible fluorescent probe for detecting ferric ions and intracellular imaging. Carbohydrate Polymers, 2019, 224, 115198.	10.2	28
36	Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioactive Materials, 2022, 13, 9-22.	15.6	26

BOGUANG YANG

#	Article	IF	CITATIONS
37	Stretchable and Bioadhesive Supramolecular Hydrogels Activated by a One-Stone–Two-Bird Postgelation Functionalization Method. ACS Applied Materials & Interfaces, 2019, 11, 16328-16335.	8.0	25
38	Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. Journal of Materials Chemistry A, 2020, 8, 12463-12471.	10.3	22
39	Biomimetic Presentation of Cryptic Ligands <i>via</i> Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano, 2020, 14, 4027-4035.	14.6	22
40	Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression. International Journal of Nanomedicine, 2016, 11, 269.	6.7	20
41	Synthesis and characterization of dendritic star-shaped zwitterionic polymers as novel anticancer drug delivery carriers. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1641-1657.	3.5	18
42	Manipulating the mechanical properties of biomimetic hydrogels with multivalent host–guest interactions. Journal of Materials Chemistry B, 2019, 7, 1726-1733.	5.8	15
43	Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 11609-11620.	8.0	14
44	Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS Nano, 2022, 16, 1051-1062.	14.6	14
45	Dynamic cell-adaptable hydrogels with a moderate level of elasticity promote 3D development of encapsulated cells. Applied Materials Today, 2021, 22, 100892.	4.3	9
46	Nanoparticleâ€Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment. Advanced Materials, 2021, 33, 2007209.	21.0	9
47	Biomaterial-mediated presentation of wnt5a mimetic ligands enhances chondrogenesis and metabolism of stem cells by activating non-canonical Wnt signaling. Biomaterials, 2022, 281, 121316.	11.4	8