Thomas M Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular-scale interface engineering for polymer light-emitting diodes. Nature, 2000, 404, 481-484.	27.8	764
2	Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 1999, 75, 1679-1681.	3.3	492
3	Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 638-648.	2.1	471
4	A perspective on the production of dye-sensitized solar modules. Energy and Environmental Science, 2014, 7, 3952-3981.	30.8	381
5	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	16.0	362
6	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	30.8	345
7	Perovskite solar cells and large area modules (100Âcm 2) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015, 277, 286-291.	7.8	332
8	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	19.5	241
9	Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy, 2018, 49, 290-299.	16.0	205
10	Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy, 2015, 156, 413-422.	10.1	197
11	Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 2016, 4, .	5.1	189
12	High efficiency CH3NH3PbI(3â^'x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. Journal of Power Sources, 2014, 251, 152-156.	7.8	179
13	Vertical TiO ₂ Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015, 9, 8420-8429.	14.6	174
14	Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics, 2014, 16, 3918.	2.8	158
15	LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Applied Physics Letters, 2000, 77, 3096-3098.	3.3	154
16	Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes. Applied Physics Letters, 2001, 79, 174-176.	3.3	147
17	Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes. Journal of Applied Physics, 2003, 93, 6159-6172.	2.5	144
18	Procedures and Practices for Evaluating Thinâ€Film Solar Cell Stability. Advanced Energy Materials, 2015, 5, 1501407.	19.5	137

#	Article	IF	CITATIONS
19	Progress in flexible dye solar cell materials, processes and devices. Journal of Materials Chemistry A, 2014, 2, 10788-10817.	10.3	135
20	Printed Solar Cells and Energy Storage Devices on Paper Substrates. Advanced Functional Materials, 2019, 29, 1806798.	14.9	125
21	Airbrush spray-coating of polymer bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1775-1778.	6.2	117
22	Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Research, 2018, 11, 2669-2681.	10.4	116
23	High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in Photovoltaics: Research and Applications, 2016, 24, 436-445.	8.1	112
24	Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. Journal of Power Sources, 2015, 283, 61-67.	7.8	106
25	Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy, 2016, 30, 460-469.	16.0	103
26	Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Research, 2017, 10, 2130-2145.	10.4	97
27	Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment. Journal of Non-Crystalline Solids, 2010, 356, 1958-1961.	3.1	88
28	Using EIS for diagnosis of dye-sensitized solar cells performance. Journal of Applied Electrochemistry, 2009, 39, 2291-2295.	2.9	79
29	TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 150-157.	6.2	72
30	Spray Coating for Polymer Solar Cells: An Upâ€ŧoâ€Đate Overview. Energy Technology, 2015, 3, 385-406.	3.8	69
31	Fully Plastic Dye Solar Cell Devices by Lowâ€Temperature UVâ€Irradiation of both the Mesoporous TiO ₂ Photo―and Platinized Counterâ€Electrodes. Advanced Energy Materials, 2013, 3, 1292-1298.	19.5	67
32	Laser Processing in the Manufacture of Dye ensitized and Perovskite Solar Cell Technologies. ChemElectroChem, 2016, 3, 9-30.	3.4	67
33	Perovskite Photovoltaics on Roll-To-Roll Coated Ultra-thin Glass as Flexible High-Efficiency Indoor Power Generators. Cell Reports Physical Science, 2020, 1, 100045.	5.6	66
34	Perovskite solar cells on paper and the role of substrates and electrodes on performance. IEEE Electron Device Letters, 2017, 38, 1278-1281.	3.9	60
35	Plasmon polaritons in the near infrared on fluorine doped tin oxide films. Optics Express, 2009, 17, 10155.	3.4	59
36	Contact optimization in polymer light-emitting diodes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2649-2664.	2.1	55

#	Article	IF	CITATIONS
37	Series-Connection Designs for Dye Solar Cell Modules. IEEE Transactions on Electron Devices, 2011, 58, 2759-2764.	3.0	50
38	Time dependence and freezing-in of the electrode oxygen plasma-induced work function enhancement in polymer semiconductor heterostructures. Organic Electronics, 2011, 12, 623-633.	2.6	50
39	Effect of electrolyte bleaching on the stability and performance of dye solar cells. Physical Chemistry Chemical Physics, 2014, 16, 6092.	2.8	50
40	Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser. Applied Physics Letters, 2009, 95, 103312.	3.3	49
41	Physical and Electrochemical Analysis of an Indoor–Outdoor Ageing Test of Largeâ€Area Dye Solar Cell Devices. ChemPhysChem, 2012, 13, 2925-2936.	2.1	49
42	Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Solar Energy Materials and Solar Cells, 2018, 185, 136-144.	6.2	49
43	A scalable manufacturing process for flexible active-matrix e-paper displays. Journal of the Society for Information Display, 2005, 13, 583.	2.1	44
44	8.7% Power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Solar Energy Materials and Solar Cells, 2015, 134, 194-198.	6.2	42
45	Quantifying Performance of Permeation Barrier—Encapsulation Systems for Flexible and Classâ€Based Electronics and Their Application to Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800978.	5.1	42
46	Realization of high performance large area Zâ€seriesâ€interconnected opaque dye solar cell modules. Progress in Photovoltaics: Research and Applications, 2013, 21, 1653-1658.	8.1	40
47	Influence of the interface material layers and semiconductor energetic disorder on the open circuit voltage in polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 690-699.	2.1	39
48	Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells. Nanoscale, 2017, 9, 19031-19038.	5.6	39
49	Blocking layer optimisation of poly(3-hexylthiopene) based Solid State Dye Sensitized Solar Cells. Organic Electronics, 2013, 14, 1882-1890.	2.6	38
50	Estimation of Energy Production of Dyeâ€Sensitized Solar Cell Modules for Buildingâ€Integrated Photovoltaic Applications. Energy Technology, 2014, 2, 531-541.	3.8	38
51	Comparative analysis of the outdoor performance of a dye solar cell miniâ€panel for building integrated photovoltaics applications. Progress in Photovoltaics: Research and Applications, 2015, 23, 215-225.	8.1	38
52	Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells. Solar Energy, 2017, 150, 447-453.	6.1	37
53	On the effect of Al2O3 blocking layer on the performance of dye solar cells with cobalt based electrolytes. Applied Physics Letters, 2009, 94, 173113.	3.3	36
54	Thermal stress effects on Dye-Sensitized Solar Cells (DSSCs). Microelectronics Reliability, 2011, 51, 1762-1766.	1.7	36

#	Article	lF	CITATIONS
55	Solar Cells Incorporating Water/Alcohol-Soluble Electron-Extracting DNA Nanolayers. ACS Energy Letters, 2016, 1, 510-515.	17.4	36
56	Electrochemistry in Reverse Biased Dye Solar Cells and Dye/Electrolyte Degradation Mechanisms. ChemPhysChem, 2012, 13, 2964-2975.	2.1	34
57	Blending CoS and Pt for amelioration of electrodeposited transparent counterelectrodes and the efficiency of back-illuminated dye solar cells. Journal of Materials Chemistry A, 2013, 1, 12941.	10.3	34
58	Laser processing of TiO ₂ films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation. Progress in Photovoltaics: Research and Applications, 2014, 22, 308-317.	8.1	34
59	Interplay between transparency and efficiency in dye sensitized solar cells. Optics Express, 2013, 21, 3235.	3.4	33
60	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	5.8	33
61	Fabrication of Spacer and Catalytic Layers in Monolithic Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 1004-1011.	2.5	31
62	Laser-Scribing Optimization for Sprayed SnO ₂ -Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Applied Energy Materials, 2021, 4, 4507-4518.	5.1	31
63	Taking Temperature Processing Out of Dyeâ€Sensitized Solar Cell Fabrication: Fully Laserâ€Manufactured Devices. Advanced Energy Materials, 2014, 4, 1400421.	19.5	30
64	Thermosetting Polyurethane Resins as Low-Cost, Easily Scalable, and Effective Oxygen and Moisture Barriers for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 54862-54875.	8.0	30
65	Synthetic Routes to TEGâ€6ubstituted Diketopyrrolopyrroleâ€Based Low Band ap Polymers. European Journal of Organic Chemistry, 2016, 2016, 3233-3242.	2.4	29
66	Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Research, 2021, 14, 1034-1042.	10.4	29
67	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300831.	19.5	28
68	Angular response of dye solar cells to solar and spectrally resolved light. Applied Physics Letters, 2011, 99, .	3.3	27
69	Fabrication of Fully‧prayâ€Processed Organic Photovoltaic Modules by using an Automated Process in Air. Energy Technology, 2013, 1, 757-762.	3.8	27
70	Surface and bulk phenomena in conjugated polymers devices. Synthetic Metals, 2000, 109, 7-11.	3.9	26
71	Effect of poly(3,4-ethylene dioxythiophene) on the built-in field in polymer light-emitting diodes probed by electroabsorption spectroscopy. Synthetic Metals, 2000, 111-112, 285-287.	3.9	26
72	Angular and prism coupling refractive enhancement in dye solar cells. Applied Physics Letters, 2010, 96, .	3.3	26

#	Article	IF	CITATIONS
73	Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO ₄ laser patterned rutile TiO ₂ nanorods. Nanotechnology, 2015, 26, 494002.	2.6	26
74	Laser-Sintered \$hbox{TiO}_{2}\$ Films for Dye Solar Cell Fabrication: An Electrical, Morphological, and Electron Lifetime Investigation. IEEE Transactions on Electron Devices, 2011, 58, 3179-3188.	3.0	25
75	Correlation between Cell Performance and Physical Transport Parameters in Dye Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1151-1157.	3.1	25
76	Micro-Raman analysis of reverse bias stressed dye-sensitized solar cells. RSC Advances, 2014, 4, 12366.	3.6	25
77	Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1707126.	14.9	25
78	Electronic states and band lineups in c-Si(100)/a-Si1â^'xCx:H heterojunctions. Physical Review B, 1997, 55, 9904-9909.	3.2	24
79	Multiscale Modeling of Dye Solar Cells and Comparison With Experimental Data. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1611-1618.	2.9	24
80	Reverse bias degradation in dye solar cells. Applied Physics Letters, 2012, 101, 123302.	3.3	24
81	Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells. Applied Energy, 2014, 113, 1155-1161.	10.1	24
82	New dinuclear hydrido-carbonyl rhenium complexes designed as photosensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 2910-2919.	2.8	24
83	Determination of the concentration of hot-carrier-induced bulk defects in laser-recrystallized polysilicon thin film transistors. Applied Physics Letters, 2000, 76, 1024-1026.	3.3	23
84	Attributes of High-Performance Electron Transport Layers for Perovskite Solar Cells on Flexible PET versus on Glass. ACS Applied Energy Materials, 2022, 5, 4096-4107.	5.1	22
85	The Builtâ€In Potential in Blue Polyfluoreneâ€Based Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 2410-2415.	21.0	21
86	Integrated tandem dye solar cells. RSC Advances, 2013, 3, 20273.	3.6	21
87	Low-Temperature Solution-Processed Thin SnO ₂ /Al ₂ O ₃ Double Electron Transport Layers Toward 20% Efficient Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1309-1315.	2.5	21
88	Investigation of the low field leakage current mechanism in polysilicon TFT's. IEEE Transactions on Electron Devices, 1998, 45, 213-217.	3.0	20
89	Stability of dye-sensitized solar cells under light soaking test. Journal of Non-Crystalline Solids, 2010, 356, 2049-2052.	3.1	20
90	Formulations and processing of nanocrystalline TiO ₂ films for the different requirements of plastic, metal and glass dye solar cell applications. Nanotechnology, 2013, 24, 255401.	2.6	20

#	Article	IF	CITATIONS
91	Development of Highly Bendable Transparent Window Electrodes Based on MoOx, SnO2, and Au Dielectric/Metal/Dielectric Stacks: Application to Indium Tin Oxide (ITO)-Free Perovskite Solar Cells. Frontiers in Materials, 2019, 6, .	2.4	20
92	Efficient Cosensitization Strategy for Dye-Sensitized Solar Cells. Applied Physics Express, 2012, 5, 022303.	2.4	17
93	Sustainable, Efficient, and Scalable Preparation of Pure and Performing Spiro-OMeTAD for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 4750-4757.	6.7	17
94	The influence of LiF thickness on the built-in potential of blue polymer light-emitting diodes with LiF/Al cathodes. Synthetic Metals, 2001, 124, 15-17.	3.9	16
95	Synthesis of a novel unsymmetrical Zn(<scp>ii</scp>) phthalocyanine bearing a phenyl ethynyl moiety as sensitizer for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 38-40.	3.3	16
96	Airbrush Spray Coating of Amorphous Titanium Dioxide for Inverted Polymer Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-5.	2.5	16
97	Reliability Study of Ruthenium-Based Dye-Sensitized Solar Cells (DSCs). IEEE Journal of Photovoltaics, 2012, 2, 27-34.	2.5	16
98	Solid state dye solar cell modules. Journal of Power Sources, 2014, 246, 361-364.	7.8	16
99	A Systematic Investigation of Permeation Barriers for Flexible Dye ensitized Solar Cells. Energy Technology, 2016, 4, 1455-1462.	3.8	16
100	Fabrication and reliability of dye solar cells: A resonance Raman scattering study. Microelectronics Reliability, 2012, 52, 2487-2489.	1.7	15
101	Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2Films. International Journal of Photoenergy, 2010, 2010, 1-11.	2.5	13
102	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. Journal of Applied Electrochemistry, 2013, 43, 209-215.	2.9	13
103	Large-Area Electrodeposition of Counterelectrodes Utilizing the Same Integrated Conductive Grid for Fabrication of Parallel Flexible Dye Solar Cell Modules. IEEE Journal of Photovoltaics, 2014, 4, 1552-1559.	2.5	13
104	Thermally induced structural modifications of nano-sized anatase films and the effects on the dye-TiO2 surface interactions. Applied Surface Science, 2014, 296, 69-78.	6.1	13
105	Influence of encapsulation materials on the optical properties and conversion efficiency of heat-sealed flexible polymer solar cells. Surface and Coatings Technology, 2014, 255, 69-73.	4.8	13
106	Colour-sensitive conjugated polymer inkjet-printed pixelated artificial retina model studied via a bio-hybrid photovoltaic device. Scientific Reports, 2020, 10, 21457.	3.3	13
107	Analysis and simulation of incident photon to current efficiency in dye sensitized solar cells. Superlattices and Microstructures, 2010, 47, 192-196.	3.1	12
108	Reliability study of dye-sensitized solar cells by means of solar simulator and white LED. Microelectronics Reliability, 2012, 52, 2495-2499.	1.7	12

#	Article	IF	CITATIONS
109	Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy. IEE Proceedings: Optoelectronics, 2001, 148, 74-80.	0.8	11
110	Acceleration factor for ageing measurement of dye solar cells. Microelectronics Reliability, 2013, 53, 279-281.	1.7	11
111	Sprayâ€Coated Polymer Solar Cells based on Lowâ€Bandâ€Gap Donors Processed with <i>ortho</i> â€Xylene. Energy Technology, 2014, 2, 786-791.	3.8	11
112	Thermal activation of mass transport and charge transfer at Pt in the I3â^'/Iâ^' electrolyte of a dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2010, 12, 10786.	2.8	10
113	Flexible photovoltaics for light harvesting under LED lighting. , 2015, , .		10
114	On the Role of PTB7â€Th:[70]PCBM Blend Concentration in <i>ortho</i> â€Xylene on Polymer Solar ell Performance. Energy Technology, 2017, 5, 2168-2174.	3.8	10
115	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2170113.	5.8	10
116	Metal-free synthesis of bisthiophene-core donor acceptor organic photosensitizers for dye-sensitized solar cells. Tetrahedron, 2015, 71, 7260-7266.	1.9	9
117	Simple and effective deposition method for solar cell perovskite films using a sheet of paper. IScience, 2022, 25, 103712.	4.1	9
118	Inverted organic photovoltaics with a solution-processed ZnO/MgO electron transport bilayer. Journal of Materials Chemistry C, 2021, 9, 3901-3910.	5.5	8
119	Photocurrent enhancement of dye solar cells by efficient light management. Superlattices and Microstructures, 2010, 47, 197-201.	3.1	6
120	Nanocomposites for organic and hybrid organic-inorganic solar cells. , 2006, 6334, 139.		4
121	Comparison between positive and negative constant current stress on dye-sensitized solar cells. Microelectronics Reliability, 2013, 53, 1804-1808.	1.7	4
122	Interferometric study of microchamber in large area dye solar cells. Solar Energy, 2013, 95, 246-254.	6.1	4
123	Homogenization of Optical Field in Nanocrystal-Embedded Perovskite Composites. ACS Energy Letters, 2022, 7, 1657-1671.	17.4	4
124	Cathodes incorporating thin fluoride layers for efficient injection in blue polymer light-emitting diodes. , 2002, , .		3
125	PSPICE models for Dye solar cells and modules. , 2011, , .		3
126	Angular refractive path for optical enhancement and evaluation of dye solar cells. Solar Energy, 2013, 98, 553-560.	6.1	3

#	Article	IF	CITATIONS
127	Study of the effects of UV-exposure on dye-sensitized solar cells. , 2013, , .		3
128	Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells. Applied Physics Letters, 2014, 105, 063304.	3.3	3
129	Emerging Thinâ€Film Photovoltaics: Stabilize or Perish. Advanced Energy Materials, 2015, 5, .	19.5	3
130	Inverted Bulkâ€Heterojunction Solar Cells using Polyethylenimineâ€Ethoxylated Processed from a Fully Aqueous Dispersion as Electronâ€Transport Layer. Energy Technology, 2015, 3, 1152-1158.	3.8	3
131	An efficient Buchwald–Hartwig amination protocol enables the synthesis of new branched and polymeric hole transport materials for perovskite solar cells. Energy Advances, 0, , .	3.3	3
132	Biological/metal oxide composite transport layers cast from green solvents for boosting light harvesting response of organic photovoltaic cells indoors. Nanotechnology, 2022, 33, 405404.	2.6	3
133	Effects of power converters on dye-sensitized solar cells. , 2007, , .		2
134	The impact of outdoor meteorological parameters on the performance of dye-sensitized solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	2
135	Mesoscopic perovskite solar cells and modules. , 2014, , .		2
136	Degradation mechanisms of dye-sensitized solar cells: Light, bias and temperature effects. , 2015, , .		2
137	Polymer Solar Cells: Enhanced Charge Separation Efficiency in DNA Templated Polymer Solar Cells (Adv. Funct. Mater. 26/2018). Advanced Functional Materials, 2018, 28, 1870181.	14.9	2
138	Laser sintering of photoelectrode layers for Dye Solar Cell technology. , 2009, , .		0
139	Optical stress and reliability study of ruthenium-based dye-sensitized solar cells (DSSC). , 2011, , .		0
140	Reverse Bias Degradation in Shadowed Devices in TiO2 Dye-Sensitized Solar Cell Modules. Materials Research Society Symposia Proceedings, 2012, 1442, 40.	0.1	0
141	Raster Scanning Laser and UV Processing of nanocrystalline TiO2 Films for Sintering in Dye Solar Cells: Device Performance, Throughput and Embodied Energy. Materials Research Society Symposia Proceedings, 2012, 1447, 33.	0.1	0
142	Electron-collecting oxide layers in inverted polymer solar cells via oxidation of thermally evaporated titanium. Semiconductor Science and Technology, 2016, 31, 105003.	2.0	0
143	Polyurethanes as low cost and efficient encapsulants for Perovskite Solar Cells. , 0, , .		0
144	Injecting Inter-Layers and the Built-in Potential of Blue Polymer Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0

#	Article	IF	CITATIONS
145	Perovskite Solar Cells: A Photovoltaic Technology With Outstanding Light-Harvesting Capabilities Under Indoor Illumination. , 2018, , .		0
146	Carbazole-Pyridazine copolymers and their rhenium complexes: Effect of the molecular structure on the electronic properties. European Polymer Journal, 2022, 168, 111095.	5.4	0
147	Method for fabricating flexible solar cell perovskite semiconductors via a sheet of paper applicator soaked in anti-solvent. , 2022, , .		0