Stephen Cavers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205400/publications.pdf

Version: 2024-02-01

87 3,168 28 51 papers citations h-index g-index

92 92 92 5294 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Scientific Data, 2020, 7, 1.	5.3	830
2	Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, 2014, 333, 66-75.	3.2	194
3	Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Molecular Ecology, 2003, 12, 1451-1460.	3.9	115
4	Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity, 2005, 95, 281-289.	2.6	100
5	Adaptive and plastic responses of <i>Quercus petraea</i> populations to climate across Europe. Global Change Biology, 2017, 23, 2831-2847.	9.5	92
6	The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity, 2015, 115, 97-99.	2.6	78
7	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2010 – 31 May 2010. Molecular Ecology Resources, 2010, 10, 1098-1105.	4.8	71
8	Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Science International: Genetics, 2013, 7, 55-62.	3.1	69
9	Grazing alters insect visitation networks and plant mating systems. Functional Ecology, 2014, 28, 178-189.	3.6	63
10	High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland. Heredity, 2011, 106, 775-787.	2.6	54
11	Genetic Diversity and Population Structure of Acacia senegal (L) Willd. in Kenya. Tropical Plant Biology, 2010, 3, 59-70.	1.9	53
12	Sampling Tissue for DNA Analysis of Trees: Trunk Cambium as an Alternative to Canopy Leaves. Silvae Genetica, 2005, 54, 265-269.	0.8	50
13	Can we protect forests by harnessing variation in resistance to pests and pathogens?. Forestry, 2015, 88, 3-12.	2.3	50
14	Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant and Soil, 2007, 294, 125-136.	3.7	49
15	Geographical patterns of nucleotide diversity and population differentiation in three closely related European pine species in the <i>Pinus mugo </i> complex. Botanical Journal of the Linnean Society, 2013, 172, 225-238.	1.6	48
16	The basis of resilience in forest tree species and its use in adaptive forest management in Britain. Forestry, 2015, 88, 13-26.	2.3	48
17	Fine-scale genetic structure and gene flow within Costa Rican populations of mahogany (Swietenia) Tj ETQq $1\ 1$	0.784314	rgBT /Overloo
18	Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 2005, 95, 274-280.	2.6	43

#	Article	IF	CITATIONS
19	Seasonal patterns of photochemical capacity and spring phenology reveal genetic differentiation among native Scots pine (Pinus sylvestris L.) populations in Scotland. Forest Ecology and Management, 2011, 262, 1020-1029.	3.2	41
20	Comparative transcriptomics of a complex of four European pine species. BMC Genomics, 2015, 16, 234.	2.8	40
21	Title is missing!. Conservation Genetics, 2003, 4, 571-580.	1.5	39
22	Genetic Consequences of Multigenerational and Landscape Colonisation Bottlenecks for a Neotropical Forest Pioneer Tree, Vochysia ferruginea. Tropical Plant Biology, 2010, 3, 14-27.	1.9	39
23	FORUM: Effective management of ecological resilience $\hat{a} \in \text{``are we there yet?. Journal of Applied Ecology, 2015, 52, 1311-1315.}$	4.0	39
24	Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity, 2012, 109, 372-382.	2.6	36
25	Spring phenology shows genetic variation among and within populations in seedlings of Scots pine (<i>Pinus sylvestris</i> L.) in the Scottish Highlands. Plant Ecology and Diversity, 2013, 6, 523-536.	2.4	35
26	Targeting genetic resource conservation in widespread species: a case study of Cedrela odorata L Forest Ecology and Management, 2004, 197, 285-294.	3.2	31
27	Chloroplast DNA Microsatellites Reveal Contrasting Phylogeographic Structure in Mahogany (Swietenia macrophylla King, Meliaceae) from Amazonia and Central America. Tropical Plant Biology, 2010, 3, 40-49.	1.9	31
28	Cryptic species and phylogeographical structure in the tree <i>Cedrela odorata</i> L. throughout the Neotropics. Journal of Biogeography, 2013, 40, 732-746.	3.0	31
29	Hybridization in contact zone between temperate European pine species. Tree Genetics and Genomes, 2016, 12, 1.	1.6	31
30	Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management. Evolutionary Applications, 2015, 8, 972-987.	3.1	29
31	Island Biogeography, the Effects of Taxonomic Effort and the Importance of Island Niche Diversity to Single-Island Endemic Species. Systematic Biology, 2014, 63, 55-65.	5 . 6	28
32	Supplying trees in an era of environmental uncertainty: Identifying challenges faced by the forest nursery sector in Great Britain. Land Use Policy, 2016, 58, 415-426.	5 . 6	27
33	Community genetics in the time of nextâ€generation molecular technologies. Molecular Ecology, 2013, 22, 3198-3207.	3.9	25
34	Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Molecular Ecology Resources, 2020, 20, 1697-1705.	4.8	25
35	Pollen flow in fragmented landscapes maintains genetic diversity following stand-replacing disturbance in a neotropical pioneer tree, Vochysia ferruginea Mart. Heredity, 2015, 115, 125-129.	2.6	23
36	Weak largeâ€scale population genetic structure in a philopatric seabird, the European Shag <i>Phalacrocorax aristotelis</i> . Ibis, 2011, 153, 768-778.	1.9	22

#	Article	IF	CITATIONS
37	A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in Taxus baccata L. Evolutionary Applications, 2020, 13, 143-160.	3.1	22
38	Contrasting Quantitative Traits and Neutral Genetic Markers for Genetic Resource Assessment of Mesoamerican Cedrela Odorata. Silvae Genetica, 2005, 54, 281-292.	0.8	22
39	Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation. Forestry, 2010, 83, 535-545.	2.3	21
40	Can genetic bar-coding be used to identify aquatic Ranunculus L. subgenus Batrachium (DC) A. Gray? A test using some species from the British Isles. Aquatic Botany, 2011, 95, 65-70.	1.6	21
41	Substantial heritable variation for susceptibility to <i>Dothistroma septosporum</i> within populations of native British Scots pine (<i>Pinus sylvestris</i>). Plant Pathology, 2016, 65, 987-996.	2.4	21
42	Standardized genetic diversityâ€life history correlates for improved genetic resource management of Neotropical trees. Diversity and Distributions, 2018, 24, 730-741.	4.1	21
43	Genetic variation for needle traits in Scots pine (Pinus sylvestris L.). Tree Genetics and Genomes, 2016, 12, 1.	1.6	19
44	Ecology and management history drive spatial genetic structure in Scots pine. Forest Ecology and Management, 2017, 400, 68-76.	3.2	18
45	Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Molecular Ecology Resources, 2017, 17, 943-954.	4.8	18
46	High genetic similarity between Polish and North European Scots pine (Pinus sylvestris L.) populations at nuclear gene loci. Tree Genetics and Genomes, 2014, 10, 1015-1025.	1.6	17
47	Rangewide ploidy variation and evolution in Acacia senegal: a north–south divide?. AoB PLANTS, 2015, 7, .	2.3	17
48	Florally rich habitats reduce insect pollination and the reproductive success of isolated plants. Ecology and Evolution, 2017, 7, 6507-6518.	1.9	17
49	Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd.? Evidence from carbon and nitrogen stable isotopes. Plant and Soil, 2013, 369, 479-496.	3.7	16
50	Early phenology and growth trait variation in closely related European pine species. Ecology and Evolution, 2018, 8, 655-666.	1.9	16
51	Isolation and characterization of microsatellite markers for Cedrela odorata L. (Meliaceae), a high value neotropical tree. Conservation Genetics, 2008, 9, 457-459.	1.5	15
52	Molecular signatures of divergence and selection in closely related pine taxa. Tree Genetics and Genomes, 2018, 14, 83.	1.6	15
53	Phenotypes of <i>Pinus sylvestris </i> are more coordinated under local harsher conditions across Europe. Journal of Ecology, 2021, 109, 2580-2596.	4.0	15
54	Regional and Population-scale Influences on Genetic Diversity Partitioning within Costa Rican Populations of the Pioneer Tree Vochysia ferruginea Mart. Silvae Genetica, 2005, 54, 258-264.	0.8	15

#	Article	IF	CITATIONS
55	Has <scp>S</scp> cots pine (<i>Pinus sylvestris</i>) coâ€evolved with <i>Dothistroma septosporum</i> in <scp>S</scp> cotland? Evidence for spatial heterogeneity in the susceptibility of native provenances. Evolutionary Applications, 2016, 9, 982-993.	3.1	14
56	Substantial variation in the timing of pollen production reduces reproductive synchrony between distant populations of <i>Pinus sylvestris</i> L. in Scotland. Ecology and Evolution, 2017, 7, 5754-5765.	1.9	14
57	Phylogeography of Neotropical trees. Journal of Biogeography, 2013, 40, 615-617.	3.0	13
58	Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. Plant Journal, 2022, 109, 1337-1350.	5.7	13
59	Among population differentiation at nuclear genes in native Scots pine (Pinus sylvestris L.) in Scotland. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 79-86.	1.2	11
60	Evolution, ecology and tree health: finding ways to prepare Britain's forests for future threats. Forestry, 2015, 88, 1-2.	2.3	11
61	Current Approaches and Perspectives in Population Genetics of Scots Pine (<i>Pinus sylvestris</i> L). Forest Science, 2016, 62, 343-354.	1.0	11
62	The GenTree Leaf Collection: Inter―and intraspecific leaf variation in seven forest tree species in Europe. Global Ecology and Biogeography, 2021, 30, 590-597.	5.8	11
63	Genetic structure in the European endemic seabird, <i>Phalacrocorax aristotelis</i> , shaped by a complex interaction of historical and contemporary, physical and nonphysical drivers. Molecular Ecology, 2017, 26, 2796-2811.	3.9	10
64	Interspecific gene flow and ecological selection in a pine (Pinus sp.) contact zone. Plant Systematics and Evolution, 2015, 301, 1643-1652.	0.9	8
65	Forest ecosystem genomics and adaptation: EVOLTREE conference report. Tree Genetics and Genomes, 2011, 7, 869-875.	1.6	7
66	Cryptic genetic variation and adaptation to waterlogging in Caledonian Scots pine, <i>Pinus sylvestris</i> L Ecology and Evolution, 2018, 8, 8665-8675.	1.9	7
67	Clinal genetic variation and phenotypic plasticity in leaf phenology, growth and stem form in common ash (<i>Fraxinus excelsior</i> L.). Forestry, 2022, 95, 83-94.	2.3	7
68	Seed sourcing for woodland creation in an era of uncertainty: an analysis of the options for Great Britain. Forestry, 2016 , , .	2.3	6
69	Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction. Mycorrhiza, 2020, 30, 185-195.	2.8	6
70	Transfer of Microsatellite Loci For The Tropical Tree Prunus africana (Hook. f.) Kalkman. Silvae Genetica, 2009, 58, 276-279.	0.8	5
71	Hybrid plants preserve unique genetic variation in the St Helena endemic trees Commidendrum rotundifolium DC Roxb. and C. spurium (G.Forst.) DC. Conservation Genetics, 2017, 18, 241-246.	1.5	5
72	Invasion, isolation and evolution shape population genetic structure in Campanula rotundifolia. AoB PLANTS, 2020, 12, plaa011.	2.3	5

#	Article	IF	CITATIONS
73	Admixture and selection patterns across the European distribution of Scots pine, <i>Pinus sylvestris</i> (Pinaceae). Botanical Journal of the Linnean Society, 2022, 200, 416-432.	1.6	5
74	Nuclear and plastid SNP markers for tracing Cedrela timber in the tropics. Conservation Genetics Resources, 2020, 12, 239-244.	0.8	4
75	Candidate Genes for the High-Altitude Adaptations of Two Mountain Pine Taxa. International Journal of Molecular Sciences, 2021, 22, 3477.	4.1	4
76	Prospects for Genetic Improvement of Acacia Senegal: Can Molecular Approaches Deliver Better Gum Yield and Quality?. Special Publication - Royal Society of Chemistry, 2011, , 99-109.	0.0	4
77	Chloroplast and Total Genomic Diversity in the Endemic Costa Rican Tree Lonchocarpus costaricensis (J. D. Smith) Pittier (Papilionaceae). Silvae Genetica, 2005, 54, 293-300.	0.8	4
78	Development and characterization of microsatellite markers for Osyris lanceolata Hochst. & Steud., an endangered African sandalwood tree species. Tropical Plant Research, 2016, 3, 701-703.	0.4	4
79	Identifying and testing marker–trait associations for growth and phenology in three pine species: Implications for genomic prediction. Evolutionary Applications, 2022, 15, 330-348.	3.1	4
80	Environmental factors and host genetic variation shape the fungal endophyte communities within needles of Scots pine (Pinus sylvestris). Fungal Ecology, 2022, 57-58, 101162.	1.6	4
81	Microsatellite loci isolated from the tropical tree <i> Hymenaea courbaril</i> L. (Fabaceae). Molecular Ecology Resources, 2008, 8, 1020-1022.	4.8	3
82	Structuring of genetic diversity in <i>Albizia gummifera</i> C.A.Sm. among some East African and Madagascan populations. African Journal of Ecology, 2010, 48, 841-843.	0.9	3
83	Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine (<i>Pinus sylvestris</i> L.) seedlings. Ecology and Evolution, 2021, 11, 4826-4842.	1.9	3
84	The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience, 2021, 10, .	6.4	3
85	Cross-amplification and Characterization of Polymorphic Microsatellite Markers From Acacia (Senegalia) mellifera and Acacia brevispica to Acacia senegal (L.) Willd Silvae Genetica, 2010, 59, 285-288.	0.8	2
86	Weak isolation by distance and geographic diversity gradients persist in Scottish relict pine forest. IForest, 2018, 11, 449-458.	1.4	2
87	Development of nuclear SNP markers for Mahogany (Swietenia spp.). Conservation Genetics Resources, 2020, 12, 585-587.	0.8	1