
David H O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	5.8	21
2	Anti-membrane Antibodies Persist at Least One Year and Discriminate Between Past Coronavirus Disease 2019 Infection and Vaccination. Journal of Infectious Diseases, 2022, 226, 1897-1902.	1.9	9
3	Human immune globulin treatment controls Zika viremia in pregnant rhesus macaques. PLoS ONE, 2022, 17, e0266664.	1.1	4
4	Transmission of SARS-CoV-2 in domestic cats imposes a narrow bottleneck. PLoS Pathogens, 2021, 17, e1009373.	2.1	84
5	Consistent ultra-long DNA sequencing with automated slow pipetting. BMC Genomics, 2021, 22, 182.	1.2	9
6	Viral Sequencing to Investigate Sources of SARS-CoV-2 Infection in US Healthcare Personnel. Clinical Infectious Diseases, 2021, 73, e1329-e1336.	2.9	43
7	Development and Characterization of a cDNA-Launch Recombinant Simian Hemorrhagic Fever Virus Expressing Enhanced Green Fluorescent Protein: ORF 2b' Is Not Required for In Vitro Virus Replication. Viruses, 2021, 13, 632.	1.5	5
8	Early Embryonic Loss Following Intravaginal Zika Virus Challenge in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 686437.	2.2	9
9	The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265.	2.6	58
10	Specific COVID-19 Symptoms Correlate with High Antibody Levels against SARS-CoV-2. ImmunoHorizons, 2021, 5, 466-476.	0.8	23
11	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
12	African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. Journal of Virology, 2021, 95, e0222020.	1.5	26
13	Previous exposure to dengue virus is associated with increased Zika virus burden at the maternal-fetal interface in rhesus macaques. PLoS Neglected Tropical Diseases, 2021, 15, e0009641.	1.3	20
14	Oil immersed lossless total analysis system for integrated RNA extraction and detection of SARS-CoV-2. Nature Communications, 2021, 12, 4317.	5.8	28
15	Severe Acute Respiratory Syndrome Coronavirus 2 Transmission in Intercollegiate Athletics Not Fully Mitigated With Daily Antigen Testing. Clinical Infectious Diseases, 2021, 73, S45-S53.	2.9	22
16	Acute SARS-CoV-2 infections harbor limited within-host diversity and transmit via tight transmission bottlenecks. PLoS Pathogens, 2021, 17, e1009849.	2.1	80
17	Mind the gap from research laboratory to clinic: Challenges and opportunities for next-generation assays in human diseases. Vaccine, 2021, 39, 5233-5239.	1.7	0
18	Neonatal Development in Prenatally Zika Virus-Exposed Infant Macaques with Dengue Immunity. Viruses, 2021, 13, 1878.	1.5	11

#	Article	IF	CITATIONS
19	Interventions to Disrupt Coronavirus Disease Transmission at a University, Wisconsin, USA, August–October 2020. Emerging Infectious Diseases, 2021, 27, 2776-2785.	2.0	24
20	SARS-CoV-2 Genomic Surveillance Reveals Little Spread From a Large University Campus to the Surrounding Community. Open Forum Infectious Diseases, 2021, 8, ofab518.	0.4	22
21	Initial Evaluation of a Mobile SARS-CoV-2 RT-LAMP Testing Strategy. Journal of Biomolecular Techniques, 2021, 32, 137-147.	0.8	11
22	The First COVIDecade. Wisconsin Medical Journal, 2021, 120, 162-163.	0.3	0
23	Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. Journal of Biomolecular Techniques, 2021, 32, 228-275.	0.8	28
24	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	1.2	17
25	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	1.2	14
26	Functional Interactions of Common Allotypes of Rhesus Macaque Fcl̂ ³ R2A and Fcl̂ ³ R3A with Human and Macaque IgG Subclasses. Journal of Immunology, 2020, 205, 3319-3332.	0.4	9
27	Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nature Communications, 2020, 11, 5558.	5.8	39
28	Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nature Reviews Immunology, 2020, 20, 727-738.	10.6	107
29	Discovery of a Novel Simian Pegivirus in Common Marmosets (Callithrix jacchus) with Lymphocytic Enterocolitis. Microorganisms, 2020, 8, 1509.	1.6	3
30	Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020, 370, .	6.0	105
31	Discovery of Lanama Virus, a Distinct Member of Species Kunsagivirus C (Picornavirales:) Tj ETQq1 1 0.784314 r	gBT /Over	loc႘္ 10 Tf 5
32	Long-Term Protection of Rhesus Macaques from Zika Virus Reinfection. Journal of Virology, 2020, 94, .	1.5	7
33	Spondweni virus causes fetal harm in Ifnar1 mice and is transmitted by Aedes aegypti mosquitoes. Virology, 2020, 547, 35-46.	1.1	12
34	Characterization of 100 extended major histocompatibility complex haplotypes in Indonesian cynomolgus macaques. Immunogenetics, 2020, 72, 225-239.	1.2	16
35	High-Throughput Identification of MHC Class I Binding Peptides Using an Ultradense Peptide Array. Journal of Immunology, 2020, 204, 1689-1696.	0.4	13
36	Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS ONE, 2020, 15, e0235877.	1.1	16

#	Article	IF	CITATIONS
37	Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples. PLoS ONE, 2020, 15, e0244882.	1.1	35
38	Title is missing!. , 2020, 15, e0235877.		0
39	Title is missing!. , 2020, 15, e0235877.		0
40	Title is missing!. , 2020, 15, e0235877.		0
41	Title is missing!. , 2020, 15, e0235877.		0
42	Title is missing!. , 2020, 15, e0244882.		0
43	Title is missing!. , 2020, 15, e0244882.		Ο
44	Title is missing!. , 2020, 15, e0244882.		0
45	Title is missing!. , 2020, 15, e0244882.		Ο
46	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	4.2	41
47	Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques. PLoS Pathogens, 2019, 15, e1007766.	2.1	46
48	MHC genotyping from rhesus macaque exome sequences. Immunogenetics, 2019, 71, 531-544.	1.2	16
49	Human, Nonhuman Primate, and Bat Cells Are Broadly Susceptible to Tibrovirus Particle Cell Entry. Frontiers in Microbiology, 2019, 10, 856.	1.5	8
50	Using Macaques to Address Critical Questions in Zika Virus Research. Annual Review of Virology, 2019, 6, 481-500.	3.0	27
51	Clinical Characterization of Host Response to Simian Hemorrhagic Fever Virus Infection in Permissive and Refractory Hosts: A Model for Determining Mechanisms of VHF Pathogenesis. Viruses, 2019, 11, 67.	1.5	3
52	Characterization of Mauritian Cynomolgus Macaque Fcl̂3R Alleles Using Long-Read Sequencing. Journal of Immunology, 2019, 202, 151-159.	0.4	8
53	Restricted MHC class I A locus diversity in olive and hybrid olive/yellow baboons from the Southwest National Primate Research Center. Immunogenetics, 2018, 70, 449-458.	1.2	4
54	Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Science Translational Medicine, 2018, 10, .	5.8	75

#	Article	IF	CITATIONS
55	The Role of MHC-E in T Cell Immunity Is Conserved among Humans, Rhesus Macaques, and Cynomolgus Macaques. Journal of Immunology, 2018, 200, 49-60.	0.4	54
56	Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques. Immunogenetics, 2018, 70, 381-399.	1.2	9
57	Subclinical Infection of Macaques and Baboons with A Baboon Simarterivirus. Viruses, 2018, 10, 701.	1.5	3
58	Antibody responses to Zika virus proteins in pregnant and non-pregnant macaques. PLoS Neglected Tropical Diseases, 2018, 12, e0006903.	1.3	15
59	Diversification of Bw4 Specificity and Recognition of a Nonclassical MHC Class I Molecule Implicated in Maternal–Fetal Tolerance by Killer Cell Ig-like Receptors of the Rhesus Macaque. Journal of Immunology, 2018, 201, 2776-2786.	0.4	6
60	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	15.2	85
61	Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS ONE, 2018, 13, e0190617.	1.1	89
62	Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics. PLoS Pathogens, 2018, 14, e1006964.	2.1	38
63	Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity. Vaccine Journal, 2017, 24, .	3.2	48
64	Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities. Immunogenetics, 2017, 69, 211-229.	1.2	40
65	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
66	Within-Host Evolution of Simian Arteriviruses in Crab-Eating Macaques. Journal of Virology, 2017, 91, .	1.5	4
67	Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques. Immunogenetics, 2017, 69, 325-339.	1.2	25
68	Seroprevalence of Zika Virus in Wild African Green Monkeys and Baboons. MSphere, 2017, 2, .	1.3	50
69	Macaque monkeys in Zika virus research: 1947–present. Current Opinion in Virology, 2017, 25, 34-40.	2.6	29
70	Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. Nature Communications, 2017, 8, 169.	5.8	49
71	Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nature Communications, 2017, 8, 2096.	5.8	87
72	Genome Sequence of a Novel Kunsagivirus (<i>Picornaviridae</i> : <i>Kunsagivirus</i>) from a Wild Baboon (<i>Papio cynocephalus</i>). Genome Announcements, 2017, 5, .	0.8	2

#	Article	IF	CITATIONS
73	The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics, 2017, 69, 87-99.	1.2	15
74	Development of a Qualitative Quantitative Polymerase Chain Reaction Test to Identify Patients Failing First-Line Therapy to Non-Nucleotide Reverse Transcriptase Inhibitor. AIDS Research and Human Retroviruses, 2017, 33, 386-394.	0.5	0
75	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathogens, 2017, 13, e1006378.	2.1	201
76	KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques. PLoS Pathogens, 2017, 13, e1006506.	2.1	21
77	Pegivirus avoids immune recognition but does not attenuate acute-phase disease in a macaque model of HIV infection. PLoS Pathogens, 2017, 13, e1006692.	2.1	15
78	Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques. MBio, 2016, 7, e02009-15.	1.8	14
79	Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8, 322.	1.5	227
80	Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Neglected Tropical Diseases, 2016, 10, e0005168.	1.3	125
81	Microbial Translocation and Inflammation Occur in Hyperacute Immunodeficiency Virus Infection and Compromise Host Control of Virus Replication. PLoS Pathogens, 2016, 12, e1006048.	2.1	38
82	Forging Collaborative Relationships in Brazil: From AIDS to ZIKV. Cell, 2016, 166, 2-4.	13.5	3
83	Real-Time Sharing of Zika Virus Data in an Interconnected World. JAMA Pediatrics, 2016, 170, 633.	3.3	6
84	Arteriviruses, Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys. Journal of Virology, 2016, 90, 6724-6737.	1.5	26
85	Tetherin Antagonism by HIV-1 Group M Nef Proteins. Journal of Virology, 2016, 90, 10701-10714.	1.5	16
86	A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 2016, 7, 12204.	5.8	353
87	Zoonotic Potential of Simian Arteriviruses. Journal of Virology, 2016, 90, 630-635.	1.5	48
88	Rapid identification of major histocompatibility complex class I haplotypes using deep sequencing in an endangered Old World monkey. Conservation Genetics Resources, 2016, 8, 23-26.	0.4	4
89	Reorganization and expansion of the nidoviral family Arteriviridae. Archives of Virology, 2016, 161, 755-768.	0.9	254
90	Specific Detection of Two Divergent Simian Arteriviruses Using RNAscope In Situ Hybridization. PLoS ONE, 2016, 11, e0151313.	1.1	7

#	Article	IF	CITATIONS
91	GB Virus C Coinfections in West African Ebola Patients. Journal of Virology, 2015, 89, 2425-2429.	1.5	65
92	Durable sequence stability and bone marrow tropism in a macaque model of human pegivirus infection. Science Translational Medicine, 2015, 7, 305ra144.	5.8	22
93	Simian Hemorrhagic Fever Virus Cell Entry Is Dependent on CD163 and Uses a Clathrin-Mediated Endocytosis-Like Pathway. Journal of Virology, 2015, 89, 844-856.	1.5	38
94	Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. Journal of Virology, 2015, 89, 10156-10175.	1.5	19
95	LayerCake: a tool for the visual comparison of viral deep sequencing data. Bioinformatics, 2015, 31, 3522-3528.	1.8	5
96	No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Human Immunology, 2015, 76, 891-896.	1.2	68
97	Expansion of Simian Immunodeficiency Virus (SIV)-Specific CD8 T Cell Lines from SIV-Naive Mauritian Cynomolgus Macaques for Adoptive Transfer. Journal of Virology, 2015, 89, 9748-9757.	1.5	21
98	Genome Sequence of Bivens Arm Virus, a Tibrovirus Belonging to the Species Tibrogargan virus () Tj ETQq0 0 0 r	gBT/Qver	lock 10 Tf 50
99	Maternal CD4 ⁺ T cells protect against severe congenital cytomegalovirus disease in a novel nonhuman primate model of placental cytomegalovirus transmission. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13645-13650.	3.3	90
100	The TB-specific CD4+ T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis, 2015, 95, 722-735.	0.8	39
101	Novel MHC class I full-length allele and haplotype characterization in sooty mangabeys. Immunogenetics, 2015, 67, 437-445.	1.2	14
102	Historical Outbreaks of Simian Hemorrhagic Fever in Captive Macaques Were Caused by Distinct Arteriviruses. Journal of Virology, 2015, 89, 8082-8087.	1.5	21
103	The genome of the vervet (<i>Chlorocebus aethiops sabaeus</i>). Genome Research, 2015, 25, 1921-1933.	2.4	114
104	High Genetic Diversity and Adaptive Potential of Two Simian Hemorrhagic Fever Viruses in a Wild Primate Population. PLoS ONE, 2014, 9, e90714.	1.1	36
105	Whole genome sequencing of SIV-infected macaques identifies candidate loci that may contribute to host control of virus replication. Genome Biology, 2014, 15, 478.	3.8	30
106	Cross-clade simultaneous HIV drug resistance genotyping for reverse transcriptase, protease, and integrase inhibitor mutations by Illumina MiSeq. Retrovirology, 2014, 11, 122.	0.9	32
107	Genome Sequences of Simian Hemorrhagic Fever Virus Variant NIH LVR42-0/M6941 Isolates (Arteriviridae: Arterivirus). Genome Announcements, 2014, 2, .	0.8	9
108	Fatal Metacestode Infection in Bornean Orangutan Caused by Unknown <i>Versteria</i> Species. Emerging Infectious Diseases, 2014, 20, 109-113.	2.0	21

#	Article	IF	CITATIONS
109	Candidate Loci Associated with AIDS Virus Replication Identified by Whole Genome Sequencing of SIV-Infected Macaques. AIDS Research and Human Retroviruses, 2014, 30, A41-A41.	0.5	0
110	KIR3DL01 Recognition of Bw4 Ligands in the Rhesus Macaque: Maintenance of Bw4 Specificity since the Divergence of Apes and Old World Monkeys. Journal of Immunology, 2014, 192, 1907-1917.	0.4	30
111	Discovery and full genome characterization of a new SIV lineage infecting red-tailed guenons (Cercopithecus ascanius schmidti) in Kibale National Park, Uganda. Retrovirology, 2014, 11, 55.	0.9	14
112	Tertiary Mutations Stabilize CD8 + T Lymphocyte Escape-Associated Compensatory Mutations following Transmission of Simian Immunodeficiency Virus. Journal of Virology, 2014, 88, 3598-3604.	1.5	2
113	Survey of major histocompatibility complex class II diversity in pig-tailed macaques. Immunogenetics, 2014, 66, 613-623.	1.2	29
114	Two Novel Simian Arteriviruses in Captive and Wild Baboons (Papio spp.). Journal of Virology, 2014, 88, 13231-13239.	1.5	28
115	Linking Pig-Tailed Macaque Major Histocompatibility Complex Class I Haplotypes and Cytotoxic T Lymphocyte Escape Mutations in Simian Immunodeficiency Virus Infection. Journal of Virology, 2014, 88, 14310-14325.	1.5	21
116	Rapid, repeated, low-dose challenges with SIVmac239 infect animals in a condensed challenge window. Retrovirology, 2014, 11, 66.	0.9	6
117	Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one. Immunogenetics, 2014, 66, 15-24.	1.2	13
118	Discovery and Characterization of Distinct Simian Pegiviruses in Three Wild African Old World Monkey Species. PLoS ONE, 2014, 9, e98569.	1.1	45
119	Deep sequencing identifies two genotypes and high viral genetic diversity of human pegivirus (GB virus) Tj ETQq1	1,0.7843 1.3	14 ₁₅ gBT /Cive
120	Selection on haemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nature Communications, 2013, 4, 2636.	5.8	80
121	Discovery and full genome characterization of two highly divergent simian immunodeficiency viruses infecting black-and-white colobus monkeys (Colobus guereza) in Kibale National Park, Uganda. Retrovirology, 2013, 10, 107.	0.9	37
122	T cell response specificity and magnitude against SIVmac239 are not concordant in major histocompatibility complex-matched animals. Retrovirology, 2013, 10, 116.	0.9	7
123	Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community. International Journal for Parasitology, 2013, 43, 613-619.	1.3	32
124	Haplessly Hoping: Macaque Major Histocompatibility Complex Made Easy. ILAR Journal, 2013, 54, 196-210.	1.8	98
125	Comparative Characterization of Transfection- and Infection-Derived Simian Immunodeficiency Virus Challenge Stocks for <i>In Vivo</i> Nonhuman Primate Studies. Journal of Virology, 2013, 87, 4584-4595.	1.5	71
126	Adoptive Transfer of Lymphocytes Isolated from Simian Immunodeficiency Virus SIVmac239Δnef-Vaccinated Macaques Does Not Affect Acute-Phase Viral Loads but May Reduce Chronic-Phase Viral Loads in Major Histocompatibility Complex-Matched Recipients. Journal of Virology, 2013, 87, 7382-7392.	1.5	15

#	Article	IF	CITATIONS
127	Therapeutic Vaccination against the Rhesus Lymphocryptovirus EBNA-1 Homologue, rhEBNA-1, Elicits T Cell Responses to Novel Epitopes in Rhesus Macaques. Journal of Virology, 2013, 87, 13904-13910.	1.5	6
128	Major Histocompatibility Complex Class I Haplotype Diversity in Chinese Rhesus Macaques. G3: Genes, Genomes, Genetics, 2013, 3, 1195-1201.	0.8	44
129	Exceptional Simian Hemorrhagic Fever Virus Diversity in a Wild African Primate Community. Journal of Virology, 2013, 87, 688-691.	1.5	61
130	A Novel Hepacivirus with an Unusually Long and Intrinsically Disordered NS5A Protein in a Wild Old World Primate. Journal of Virology, 2013, 87, 8971-8981.	1.5	88
131	Acute Phase CD8+ T Lymphocytes against Alternate Reading Frame Epitopes Select for Rapid Viral Escape during SIV Infection. PLoS ONE, 2013, 8, e61383.	1.1	6
132	Inter- and Intra-Host Viral Diversity in a Large Seasonal DENV2 Outbreak. PLoS ONE, 2013, 8, e70318.	1.1	38
133	Specific CD8 ⁺ T Cell Responses Correlate with Control of Simian Immunodeficiency Virus Replication in Mauritian Cynomolgus Macaques. Journal of Virology, 2012, 86, 7596-7604.	1.5	56
134	Loss of Effector and Anti-Inflammatory Natural Killer T Lymphocyte Function in Pathogenic Simian Immunodeficiency Virus Infection. PLoS Pathogens, 2012, 8, e1002928.	2.1	29
135	Conditional CD8 ⁺ T Cell Escape during Acute Simian Immunodeficiency Virus Infection. Journal of Virology, 2012, 86, 605-609.	1.5	29
136	Low-Cost Ultra-Wide Genotyping Using Roche/454 Pyrosequencing for Surveillance of HIV Drug Resistance. PLoS ONE, 2012, 7, e36494.	1.1	75
137	Escape from CD8+ T Cell Responses in Mamu-B*00801+ Macaques Differentiates Progressors from Elite Controllers. Journal of Immunology, 2012, 188, 3364-3370.	0.4	31
138	High-level, lasting antiviral immunity induced by a bimodal AIDS vaccine and boosted by live-virus exposure. Aids, 2012, 26, 149-155.	1.0	3
139	Analysis of Hepatitis C Virus Intrahost Diversity across the Coding Region by Ultradeep Pyrosequencing. Journal of Virology, 2012, 86, 3952-3960.	1.5	42
140	Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing. BMC Genomics, 2012, 13, 378.	1.2	38
141	Ex Vivo SIV-Specific CD8 T Cell Responses in Heterozygous Animals Are Primarily Directed against Peptides Presented by a Single MHC Haplotype. PLoS ONE, 2012, 7, e43690.	1.1	5
142	SIV Genome-Wide Pyrosequencing Provides a Comprehensive and Unbiased View of Variation within and outside CD8 T Lymphocyte Epitopes. PLoS ONE, 2012, 7, e47818.	1.1	9
143	Hepatitis C Virus NS3/NS4A DNA Vaccine Induces Multiepitope T Cell Responses in Rhesus Macaques Mimicking Human Immune Responses. Molecular Therapy, 2012, 20, 669-678.	3.7	36
144	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	1.2	82

#	Article	IF	CITATIONS
145	Visualizing virus population variability from next generation sequencing data. , 2011, , .		7
146	Direct identification of an HPV-16 tumor antigen from cervical cancer biopsy specimens. Frontiers in Immunology, 2011, 2, 75.	2.2	26
147	Novel, Divergent Simian Hemorrhagic Fever Viruses in a Wild Ugandan Red Colobus Monkey Discovered Using Direct Pyrosequencing. PLoS ONE, 2011, 6, e19056.	1.1	63
148	GagCM9-Specific CD8+ T Cells Expressing Limited Public TCR Clonotypes Do Not Suppress SIV Replication In Vivo. PLoS ONE, 2011, 6, e23515.	1.1	11
149	Screening and confirmatory testing of MHC class I alleles in pig-tailed macaques. Immunogenetics, 2011, 63, 511-521.	1.2	29
150	Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques. Immunogenetics, 2011, 63, 611-618.	1.2	23
151	The role of MHC class I allele Mamu-A*07 during SIVmac239 infection. Immunogenetics, 2011, 63, 789-807.	1.2	19
152	Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics, 2011, 12, 295.	1.2	45
153	Differential MHC class I expression in distinct leukocyte subsets. BMC Immunology, 2011, 12, 39.	0.9	36
154	PREDmafa. , 2011, , .		0
155	Transcriptionally Abundant Major Histocompatibility Complex Class I Alleles Are Fundamental to Nonhuman Primate Simian Immunodeficiency Virus-Specific CD8 ⁺ T Cell Responses. Journal of Virology, 2011, 85, 3250-3261.	1.5	47
156	Pyrosequencing Reveals Restricted Patterns of CD8 ⁺ T Cell Escape-Associated Compensatory Mutations in Simian Immunodeficiency Virus. Journal of Virology, 2011, 85, 13088-13096.	1.5	11
157	Variable Prevalence and Functional Diversity of the Antiretroviral Restriction Factor TRIMCyp in Macaca fascicularis. Journal of Virology, 2011, 85, 9956-9963.	1.5	38
158	Simian Immunodeficiency Virus SIVmac239Δnef Vaccination Elicits Different Tat 28-35 SL8-Specific CD8 + T-Cell Clonotypes Compared to a DNA Prime/Adenovirus Type 5 Boost Regimen in Rhesus Macaques. Journal of Virology, 2011, 85, 3683-3689.	1.5	12
159	Contributions of Direct and Indirect Alloresponses to Chronic Rejection of Kidney Allografts in Nonhuman Primates. Journal of Immunology, 2011, 187, 4589-4597.	0.4	14
160	Long-Term Programming of Antigen-Specific Immunity from Gene Expression Signatures in the PBMC of Rhesus Macaques Immunized with an SIV DNA Vaccine. PLoS ONE, 2011, 6, e19681.	1.1	25
161	KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif. PLoS Pathogens, 2011, 7, e1001316.	2.1	60
162	The Importance of Defining Expectations. FASEB Journal, 2011, 25, 198.1.	0.2	0

#	Article	IF	CITATIONS
163	Characterization of Mauritian cynomolgus macaque major histocompatibility complex class I haplotypes by high-resolution pyrosequencing. Immunogenetics, 2010, 62, 773-780.	1.2	112
164	Dynamics of haplotype frequency change in a CD8+TL epitope of simian immunodeficiency virus. Infection, Genetics and Evolution, 2010, 10, 555-560.	1.0	7
165	Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates. Diabetes, 2010, 59, 2558-2568.	0.3	192
166	Integrin α4β7 Is Downregulated on the Surfaces of Simian Immunodeficiency Virus SIVmac239-Infected Cells. Journal of Virology, 2010, 84, 6344-6351.	1.5	9
167	Impact of Viral Dose and Major Histocompatibility Complex Class IB Haplotype on Viral Outcome in Mauritian Cynomolgus Monkeys Vaccinated with Tat upon Challenge with Simian/Human Immunodeficiency Virus SHIV89.6P. Journal of Virology, 2010, 84, 8953-8958.	1.5	30
168	Whole-Genome Characterization of Human and Simian Immunodeficiency Virus Intrahost Diversity by Ultradeep Pyrosequencing. Journal of Virology, 2010, 84, 12087-12092.	1.5	63
169	MHC Heterozygote Advantage in Simian Immunodeficiency Virus–Infected Mauritian Cynomolgus Macaques. Science Translational Medicine, 2010, 2, 22ra18.	5.8	80
170	Efficacy of Multivalent Adenovirus-Based Vaccine against Simian Immunodeficiency Virus Challenge. Journal of Virology, 2010, 84, 2996-3003.	1.5	29
171	Trafficking, Persistence, and Activation State of Adoptively Transferred Allogeneic and Autologous Simian Immunodeficiency Virus-Specific CD8+T Cell Clones during Acute and Chronic Infection of Rhesus Macaques. Journal of Immunology, 2010, 184, 303-314.	0.4	34
172	Extralymphoid CD8 ⁺ T Cells Resident in Tissue from Simian Immunodeficiency Virus SIVmac239Δnef-Vaccinated Macaques Suppress SIVmac239 Replication <i>Ex Vivo</i> . Journal of Virology, 2010, 84, 3362-3372.	1.5	29
173	Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathogens, 2010, 6, e1001034.	2.1	299
174	A novel single cDNA amplicon pyrosequencing method for high-throughput, cost-effective sequence-based HLA class I genotyping. Human Immunology, 2010, 71, 1011-1017.	1.2	50
175	The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation. Science, 2010, 330, 1551-1557.	6.0	1,054
176	Ultradeep Pyrosequencing Detects Complex Patterns of CD8 ⁺ T-Lymphocyte Escape in Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2009, 83, 8247-8253.	1.5	61
177	Mauritian Cynomolgus Macaques Share Two Exceptionally Common Major Histocompatibility Complex Class I Alleles That Restrict Simian Immunodeficiency Virus-Specific CD8 ⁺ T Cells. Journal of Virology, 2009, 83, 6011-6019.	1.5	72
178	Infection with "Escaped―Virus Variants Impairs Control of Simian Immunodeficiency Virus SIVmac239 Replication in <i>Mamu-B*08</i> -Positive Macaques. Journal of Virology, 2009, 83, 11514-11527.	1.5	53
179	Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques. Immunogenetics, 2009, 61, 177-187.	1.2	41
180	Identification of novel MHC class I sequences in pig-tailed macaques by amplicon pyrosequencing and full-length cDNA cloning and sequencing. Immunogenetics, 2009, 61, 689-701.	1.2	34

#	Article	IF	CITATIONS
181	Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nature Medicine, 2009, 15, 1322-1326.	15.2	136
182	MHC haplotype frequencies in a UK breeding colony of Mauritian cynomolgus macaques mirror those found in a distinct population from the same geographic origin. Journal of Medical Primatology, 2009, 38, 1-14.	0.3	47
183	Resource brief: The National Non-Human Primate DNA Bank. Methods, 2009, 49, 3-4.	1.9	3
184	Nef gene evolution from a single transmitted strain in acute SIV infection. Retrovirology, 2009, 6, 57.	0.9	5
185	Cost-effective sequence-based nonhuman primate MHC class I genotyping from RNA. Methods, 2009, 49, 11-17.	1.9	10
186	Pirate Primates in Uncharted Waters: Lymphocyte Transfers in Unrelated, MHC-Matched Macaques. Current HIV Research, 2009, 7, 51-56.	0.2	7
187	Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics, 2008, 60, 37-46.	1.2	75
188	MHC class I characterization of Indonesian cynomolgus macaques. Immunogenetics, 2008, 60, 339-51.	1.2	52
189	Rapid high-resolution MHC class I genotyping of Chinese rhesus macaques by capillary reference strand-mediated conformational analysis. Immunogenetics, 2008, 60, 575-84.	1.2	9
190	KIRigami: the case for studying NK cell receptors in SIV+ macaques. Immunologic Research, 2008, 40, 235-243.	1.3	6
191	Comparative study of Tat vaccine regimens in Mauritian cynomolgus and Indian rhesus macaques: Influence of Mauritian MHC haplotypes on susceptibility/resistance to SHIV89.6P infection. Vaccine, 2008, 26, 3312-3321.	1.7	40
192	Complete Characterization of Killer Ig-Like Receptor (KIR) Haplotypes in Mauritian Cynomolgus Macaques: Novel Insights into Nonhuman Primate KIR Gene Content and Organization. Journal of Immunology, 2008, 181, 6301-6308.	0.4	78
193	Allogeneic Lymphocytes Persist and Traffic in Feral MHC-Matched Mauritian Cynomolgus Macaques. PLoS ONE, 2008, 3, e2384.	1.1	25
194	Simian Immunodeficiency Virus SIVmac239 Infection of Major Histocompatibility Complex-Identical Cynomolgus Macaques from Mauritius. Journal of Virology, 2007, 81, 349-361.	1.5	157
195	Control of Simian Immunodeficiency Virus SIVmac239 Is Not Predicted by Inheritance of Mamu-B * 17 -Containing Haplotypes. Journal of Virology, 2007, 81, 406-410.	1.5	40
196	Major histocompatibility complex-defined macaques in transplantation research. Transplantation Reviews, 2007, 21, 17-25.	1.2	10
197	Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics, 2007, 59, 449-462.	1.2	122
198	Polycystic kidney disease in rhesus macaques (Macaca mulatta). FASEB Journal, 2007, 21, A1133.	0.2	0

#	Article	IF	CITATIONS
199	MHC class I allele frequencies in pigtail macaques of diverse origin. Immunogenetics, 2006, 58, 995-1001.	1.2	37
200	Vaccine-Induced Cellular Immune Responses Reduce Plasma Viral Concentrations after Repeated Low-Dose Challenge with Pathogenic Simian Immunodeficiency Virus SIVmac239. Journal of Virology, 2006, 80, 5875-5885.	1.5	237
201	The High-Frequency Major Histocompatibility Complex Class I Allele Mamu-B * 17 Is Associated with Control of Simian Immunodeficiency Virus SIVmac239 Replication. Journal of Virology, 2006, 80, 5074-5077.	1.5	266
202	Immune responses and HIV: a little order from the chaos. Journal of Experimental Medicine, 2006, 203, 501-503.	4.2	7
203	The pigtail macaque MHC class I alleleMane-A*10presents an immundominant SIV Gag epitope: identification, tetramer development and implications of immune escape and reversion. Journal of Medical Primatology, 2005, 34, 282-293.	0.3	45
204	Cytotoxic T-Lymphocyte Escape Does Not Always Explain the Transient Control of Simian Immunodeficiency Virus SIVmac239 Viremia in Adenovirus-Boosted and DNA-Primed Mamu-A*01-Positive Rhesus Macaques. Journal of Virology, 2005, 79, 15556-15566.	1.5	53
205	Attenuation of Simian Immunodeficiency Virus SIVmac239 Infection by Prophylactic Immunization with DNA and Recombinant Adenoviral Vaccine Vectors Expressing Gag. Journal of Virology, 2005, 79, 15547-15555.	1.5	249
206	Analysis of Pigtail Macaque Major Histocompatibility Complex Class I Molecules Presenting Immunodominant Simian Immunodeficiency Virus Epitopes. Journal of Virology, 2005, 79, 684-695.	1.5	71
207	Rapid Viral Escape at an Immunodominant Simian-Human Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitope Exacts a Dramatic Fitness Cost. Journal of Virology, 2005, 79, 5721-5731.	1.5	164
208	Within-host evolution of CD8+-TL epitopes encoded by overlapping and non-overlapping reading frames of simian immunodeficiency virus. Bioinformatics, 2005, 21, iii39-iii44.	1.8	14
209	Unusually High Frequency MHC Class I Alleles in Mauritian Origin Cynomolgus Macaques. Journal of Immunology, 2005, 175, 5230-5239.	0.4	108
210	Extraepitopic Compensatory Substitutions Partially Restore Fitness to Simian Immunodeficiency Virus Variants That Escape from an Immunodominant Cytotoxic-T-Lymphocyte Response. Journal of Virology, 2004, 78, 2581-2585.	1.5	99
211	A Dominant Role for CD8 + -T-Lymphocyte Selection in Simian Immunodeficiency Virus Sequence Variation. Journal of Virology, 2004, 78, 14012-14022.	1.5	89
212	Consequences of Cytotoxic T-Lymphocyte Escape: Common Escape Mutations in Simian Immunodeficiency Virus Are Poorly Recognized in Nail^ve Hosts. Journal of Virology, 2004, 78, 10064-10073.	1.5	35
213	Identification of Seventeen New Simian Immunodeficiency Virus-Derived CD8+ T Cell Epitopes Restricted by the High Frequency Molecule, Mamu-A*02, and Potential Escape from CTL Recognition. Journal of Immunology, 2004, 173, 5064-5076.	0.4	83
214	Cytotoxic T Lymphocyte–based Control of Simian Immunodeficiency Virus Replication in a Preclinical AIDS Vaccine Trial. Journal of Experimental Medicine, 2004, 199, 1709-1718.	4.2	208
215	Reversion of CTL escape–variant immunodeficiency viruses in vivo. Nature Medicine, 2004, 10, 275-281.	15.2	349
216	Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses. Journal of Virology, 2003, 77, 9029-9040.	1.5	170

#	Article	IF	CITATIONS
217	Cytotoxic T-Lymphocyte Escape Monitoring in Simian Immunodeficiency Virus Vaccine Challenge Studies. DNA and Cell Biology, 2002, 21, 659-664.	0.9	18
218	Effects of Cytotoxic T Lymphocytes (CTL) Directed against a Single Simian Immunodeficiency Virus (SIV) Gag CTL Epitope on the Course of SIVmac239 Infection. Journal of Virology, 2002, 76, 10507-10511.	1.5	52
219	Escape in One of Two Cytotoxic T-Lymphocyte Epitopes Bound by a High-Frequency Major Histocompatibility Complex Class I Molecule, Mamu-A*02: a Paradigm for Virus Evolution and Persistence?. Journal of Virology, 2002, 76, 11623-11636.	1.5	77
220	Tat-Vaccinated Macaques Do Not Control Simian Immunodeficiency Virus SIVmac239 Replication. Journal of Virology, 2002, 76, 4108-4112.	1.5	110
221	Analysis of the immune response and viral evolution during the acute phase of SIV infection. Vaccine, 2002, 20, 1927-1932.	1.7	13
222	HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature, 2002, 420, 434-439.	13.7	321
223	Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nature Medicine, 2002, 8, 493-499.	15.2	350
224	Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection. Immunological Reviews, 2001, 183, 115-126.	2.8	41
225	Vaccination with CTL epitopes that escape: an alternative approach to HIV vaccine development?. Immunology Letters, 2001, 79, 77-84.	1.1	13
226	Simultaneous Positive and Purifying Selection on Overlapping Reading Frames of the tat and vpr Genes of Simian Immunodeficiency Virus. Journal of Virology, 2001, 75, 7966-7972.	1.5	63
227	CD8+ Lymphocytes from Simian Immunodeficiency Virus-Infected Rhesus Macaques Recognize 14 Different Epitopes Bound by the Major Histocompatibility Complex Class I Molecule Mamu-A*01: Implications for Vaccine Design and Testing. Journal of Virology, 2001, 75, 738-749.	1.5	143
228	Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature, 2000, 407, 386-390.	13.7	657
229	Definition of Five New Simian Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitopes and Their Restricting Major Histocompatibility Complex Class I Molecules: Evidence for an Influence on Disease Progression. Journal of Virology, 2000, 74, 7400-7410.	1.5	72
230	Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Medicine, 1999, 5, 1270-1276.	15.2	364