
Yonas B Dibike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8204937/publications.pdf Version: 2024-02-01

YONAS R DIRIKE

#	Article	IF	CITATIONS
1	Assessing and predicting the severity of mid-winter breakups based on Canada-wide river ice data. Journal of Hydrology, 2022, 607, 127550.	5.4	5
2	Snowpack driven streamflow predictability under future climate: contrasting changes across two western Canadian river basins. Journal of Hydrometeorology, 2022, , .	1.9	1
3	Machine-learning approach for predicting the occurrence and timing of mid-winter ice breakups on canadian rivers. Environmental Modelling and Software, 2022, 152, 105402.	4.5	5
4	Snowpack response in the Assiniboine-Red River basin associated with projected global warming of 1.0°C to 3.0°C. Journal of Great Lakes Research, 2021, 47, 677-689.	1.9	10
5	Application of dynamic contributing area for modelling the hydrologic response of the Assiniboine River Basin to a changing climate. Journal of Great Lakes Research, 2021, 47, 663-676.	1.9	17
6	Effects of Climatic Drivers and Teleconnections on Late 20th Century Trends in Spring Freshet of Four Major Arctic-Draining Rivers. Water (Switzerland), 2021, 13, 179.	2.7	2
7	Climatic Controls on Mean and Extreme Streamflow Changes Across the Permafrost Region of Canada. Water (Switzerland), 2021, 13, 626.	2.7	7
8	Runoff Projection from an Alpine Watershed in Western Canada: Application of a Snowmelt Runoff Model. Water (Switzerland), 2021, 13, 1199.	2.7	12
9	Ecological effects and causal synthesis of oil sands activity impacts on river ecosystems: water synthesis review. Environmental Reviews, 2021, 29, 315-327.	4.5	19
10	Assessing Climatic Drivers of Spring Mean and Annual Maximum Flows in Western Canadian River Basins. Water (Switzerland), 2021, 13, 1617.	2.7	3
11	Cold Region Hydrologic Models and Applications. , 2021, , 763-794.		2
12	Numerical modelling of oil-sands tailings dam breach runout and overland flow. Science of the Total Environment, 2020, 703, 134568.	8.0	19
13	Western Canadian freshwater availability: current and future vulnerabilities. Environmental Reviews, 2020, 28, 528-545.	4.5	15
14	Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. Journal of Hydrology, 2020, 588, 125065.	5.4	22
15	Recent Trends in Freshwater Influx to the Arctic Ocean from Four Major Arctic-Draining Rivers. Water (Switzerland), 2020, 12, 1189.	2.7	48
16	A Canadian River Ice Database from the National Hydrometric Program Archives. Earth System Science Data, 2020, 12, 1835-1860.	9.9	16
17	Projected Changes in the Frequency of Peak Flows along the Athabasca River: Sensitivity of Results to Statistical Methods of Analysis. Climate, 2019, 7, 88.	2.8	6
18	Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Regional Environmental Change, 2019, 19, 1801-1813.	2.9	8

Yonas B Dibike

#	Article	IF	CITATIONS
19	Modelling the Athabasca watershed snow response to a changing climate. Journal of Hydrology: Regional Studies, 2018, 15, 134-148.	2.4	30
20	Modelling the potential effects of Oil-Sands tailings pond breach on the water and sediment quality of the Lower Athabasca River. Science of the Total Environment, 2018, 642, 1263-1281.	8.0	20
21	Effects of projected climate on the hydrodynamic and sediment transport regime of the lower Athabasca River in Alberta, Canada. River Research and Applications, 2018, 34, 417-429.	1.7	21
22	Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water (Switzerland), 2018, 10, 932.	2.7	45
23	A numerical framework for modelling sediment and chemical constituents transport in the Lower Athabasca River. Journal of Soils and Sediments, 2017, 17, 1140-1159.	3.0	23
24	Implications of future climate on water availability in the western Canadian river basins. International Journal of Climatology, 2017, 37, 3247-3263.	3.5	44
25	Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River. Environmental Science and Pollution Research, 2017, 24, 2286-2303.	5.3	16
26	Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. Journal of Hydrology, 2017, 544, 327-342.	5.4	89
27	An integrated numerical framework for water quality modelling in cold-region rivers: A case of the lower Athabasca River. Science of the Total Environment, 2016, 569-570, 634-646.	8.0	18
28	Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 621-649.	3.0	293
29	Comparative evaluation of the effects of climate and land-cover changes on hydrologic responses of the Muskeg River, Alberta, Canada. Journal of Hydrology: Regional Studies, 2016, 8, 198-221.	2.4	30
30	Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 540-566.	3.0	79
31	Interâ€comparison of highâ€resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed, Canada. Hydrological Processes, 2014, 28, 4250-4271.	2.6	78
32	Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. Journal of Great Lakes Research, 2012, 38, 83-94.	1.9	79
33	Observed trends and future projections of precipitation and air temperature in the Lake Winnipeg watershed. Journal of Great Lakes Research, 2012, 38, 72-82.	1.9	22
34	Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment ¹ . Journal of the American Water Resources Association, 2012, 48, 74-89.	2.4	56
35	Simulation of North American lakeâ€ice cover characteristics under contemporary and future climate conditions. International Journal of Climatology, 2012, 32, 695-709.	3.5	51
36	Response of Northern Hemisphere lakeâ€ice cover and lakeâ€water thermal structure patterns to a changing climate. Hydrological Processes, 2011, 25, 2942-2953.	2.6	71

Yonas B Dibike

#	Article	IF	CITATIONS
37	Assessing the Need for Downscaling RCM Data for Hydrologic Impact Study. Journal of Hydrologic Engineering - ASCE, 2011, 16, 534-539.	1.9	30
38	Changing spring airâ€ŧemperature gradients along large northern rivers: Implications for severity of riverâ€ice floods. Geophysical Research Letters, 2010, 37, .	4.0	30
39	Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology, 2008, 91, 149-170.	2.8	96
40	Assessing the Effect of Climate Change on River Flow Using General Circulation Models and Hydrological Modelling – Application to the Chaudière River, Québec, Canada. Canadian Water Resources Journal, 2008, 33, 73-94.	1.2	37
41	TDNN with logical values for hydrologic modeling in a cold and snowy climate. Journal of Hydroinformatics, 2008, 10, 289-300.	2.4	3
42	Validation of hydrological models for climate scenario simulation: the case of Saguenay watershed in Quebec. Hydrological Processes, 2007, 21, 3123-3135.	2.6	47
43	Temperature change signals in northern Canada: convergence of statistical downscaling results using two driving GCMs. International Journal of Climatology, 2007, 27, 1623-1641.	3.5	46
44	Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 2006, 319, 357-382.	5.4	284
45	Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 2006, 19, 135-144.	5.9	137
46	Uncertainty analysis of statistical downscaling methods using Canadian Global Climate Model predictors. Hydrological Processes, 2006, 20, 3085-3104.	2.6	62
47	Downscaling Precipitation and Temperature with Temporal Neural Networks. Journal of Hydrometeorology, 2005, 6, 483-496.	1.9	144
48	Neural Networks and Fuzzy Systems in Model Based Control of the Overwaard Polder. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 135-145.	2.6	6
49	Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of Hydrology, 2005, 307, 145-163.	5.4	413
50	Developing generic hydrodynamic models using artificial neural networks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2002, 40, 183-190.	1.7	7
51	Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering, 2001, 15, 208-216.	4.7	487
52	Automatic calibration of groundwater models using global optimization techniques. Hydrological Sciences Journal, 1999, 44, 879-894.	2.6	61
53	Application of artificial neural networks to the simulation of a two dimensional flow. Journal of Hydraulic Research/De Recherches Hydrauliques, 1999, 37, 435-446.	1.7	24
54	On the encapsulation of numerical-hydraulic models in artificial neural network. Journal of Hydraulic Research/De Recherches Hydrauliques, 1999, 37, 147-161.	1.7	73

#	Article	IF	CITATIONS
55	Applications of artificial neural networks to the generation of wave equations from hydraulic data. Journal of Hydraulic Research/De Recherches Hydrauliques, 1999, 37, 81-97.	1.7	27