Nikolaus Pfanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8203631/publications.pdf

Version: 2024-02-01

219 papers 31,305 citations

106 h-index 168 g-index

223 all docs

223 docs citations

times ranked

223

14906 citing authors

#	Article	IF	CITATIONS
1	Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Reports, 2022, 38, 110290.	2.9	16
2	Mitochondrial sorting and assembly machinery operates by \hat{l}^2 -barrel switching. Nature, 2021, 590, 163-169.	13.7	60
3	Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metabolism, 2021, 33, 2464-2483.e18.	7.2	113
4	Morpholinos meet mitochondria: Targeting organellar gene expression. Cell, 2021, 184, 5693-5695.	13.5	1
5	The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology, 2020, 18, 2.	1.7	34
6	Studying protein import into mitochondria. Methods in Cell Biology, 2020, 155, 45-79.	0.5	20
7	Shaping the mitochondrial inner membrane in health and disease. Journal of Internal Medicine, 2020, 287, 645-664.	2.7	83
8	The Mitochondrial Import Complex MIM Functions as Main Translocase for α-Helical Outer Membrane Proteins. Cell Reports, 2020, 31, 107567.	2.9	61
9	Mitochondria and friends – a special issue in honor of Walter Neupert (1939–2019). Biological Chemistry, 2020, 401, 643-644.	1.2	O
10	Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biological Chemistry, 2019, 401, 117-129.	1.2	46
11	Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends in Cell Biology, 2019, 29, 534-548.	3.6	56
12	Dual Role of Mitochondrial Porin in Metabolite Transport across the Outer Membrane and Protein Transfer to the Inner Membrane. Molecular Cell, 2019, 73, 1056-1065.e7.	4.5	51
13	Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 2019, 575, 395-401.	13.7	146
14	Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology, 2019, 20, 267-284.	16.1	569
15	Assembling the mitochondrial ATP synthase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2850-2852.	3.3	59
16	Membrane protein insertion through a mitochondrial \hat{l}^2 -barrel gate. Science, 2018, 359, .	6.0	111
17	Assembly of the Mitochondrial Cristae Organizer Mic10 Is Regulated by Mic26–Mic27 Antagonism and Cardiolipin. Journal of Molecular Biology, 2018, 430, 1883-1890.	2.0	32
18	Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis. Cell Reports, 2018, 25, 2036-2043.e5.	2.9	68

#	Article	IF	CITATIONS
19	Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nature Communications, 2017, 8, 15258.	5.8	84
20	Mitochondrial Machineries for Protein Import and Assembly. Annual Review of Biochemistry, 2017, 86, 685-714.	5.0	651
21	Mic10, a Core Subunit of the Mitochondrial Contact Site and Cristae Organizing System, Interacts with the Dimeric F 1 F o -ATP Synthase. Journal of Molecular Biology, 2017, 429, 1162-1170.	2.0	51
22	Identification of new channels by systematic analysis of the mitochondrial outer membrane. Journal of Cell Biology, 2017, 216, 3485-3495.	2.3	40
23	Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. Cell Reports, 2017, 19, 2836-2852.	2.9	346
24	Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 737-746.	1.9	136
25	Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins. Cell Metabolism, 2016, 23, 901-908.	7.2	60
26	Mitochondrial contact site and cristae organizing system. Current Opinion in Cell Biology, 2016, 41, 33-42.	2.6	143
27	Coordination of Two Genomes by Mitochondrial Translational Plasticity. Cell, 2016, 167, 308-310.	13.5	10
28	Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nature Communications, 2016, 7, 13021.	5.8	74
29	MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria. Cell, 2016, 167, 722-738.e23.	13.5	130
30	Dynamic organization of the mitochondrial protein import machinery. Biological Chemistry, 2016, 397, 1097-1114.	1.2	31
31	Distinct Roles of Mic12 and Mic27 in the Mitochondrial Contact Site and Cristae Organizing System. Journal of Molecular Biology, 2016, 428, 1485-1492.	2.0	47
32	Central Role of Mic10 in the Mitochondrial Contact Site and Cristae Organizing System. Cell Metabolism, 2015, 21, 747-755.	7.2	120
33	Molecular architecture of the active mitochondrial protein gate. Science, 2015, 349, 1544-1548.	6.0	169
34	Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis. Journal of Cell Biology, 2015, 210, 1047-1054.	2.3	75
35	Mitochondrial machineries for insertion of membrane proteins. Current Opinion in Structural Biology, 2015, 33, 92-102.	2.6	21
36	Role of membrane contact sites in protein import into mitochondria. Protein Science, 2015, 24, 277-297.	3.1	50

#	Article	IF	CITATIONS
37	Visualizing active membrane protein complexes by electron cryotomography. Nature Communications, 2014, 5, 4129.	5. 8	59
38	Mgr2 Functions as Lateral Gatekeeper for Preprotein Sorting in the Mitochondrial Inner Membrane. Molecular Cell, 2014, 56, 641-652.	4.5	73
39	The Protein Import Machinery of Mitochondriaâ€"A Regulatory Hub in Metabolism, Stress, and Disease. Cell Metabolism, 2014, 19, 357-372.	7.2	316
40	Cell cycle–dependent regulation of mitochondrial preprotein translocase. Science, 2014, 346, 1109-1113.	6.0	128
41	The presequence pathway is involved in protein sorting to the mitochondrial outer membrane. EMBO Reports, 2014, 15, 678-85.	2.0	56
42	Clearing tail-anchored proteins from mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7888-7889.	3.3	6
43	Uniform nomenclature for the mitochondrial contact site and cristae organizing system. Journal of Cell Biology, 2014, 204, 1083-1086.	2.3	219
44	Voltage-coupled conformational dynamics of mitochondrial protein-import channel. Nature Structural and Molecular Biology, 2013, 20, 915-917.	3.6	8
45	Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, 2013, 154, 596-608.	13.5	115
46	Glucose-Induced Regulation of Protein Import Receptor Tom22 by Cytosolic and Mitochondria-Bound Kinases. Cell Metabolism, 2013, 18, 578-587.	7.2	84
47	Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nature Communications, 2013, 4, 2853.	5.8	45
48	Role of Phosphatidylethanolamine in the Biogenesis of Mitochondrial Outer Membrane Proteins. Journal of Biological Chemistry, 2013, 288, 16451-16459.	1.6	56
49	Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. Molecular Biology of the Cell, 2012, 23, 3948-3956.	0.9	108
50	Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Molecular Biology of the Cell, 2012, 23, 1618-1627.	0.9	74
51	Mgr2 promotes coupling of the mitochondrial presequence translocase to partner complexes. Journal of Cell Biology, 2012, 197, 595-604.	2.3	79
52	Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Biological Chemistry, 2012, 393, 1247-1261.	1.2	111
53	Biogenesis of mitochondria connects to the cell cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S68-S69.	0.5	0
54	Biogenesis of alpha-helical outer membrane proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S67-S68.	0.5	0

#	Article	IF	Citations
55	Mechanisms of Protein Sorting in Mitochondria. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011320-a011320.	2.3	52
56	Role of MINOS in Mitochondrial Membrane Architecture: Cristae Morphology and Outer Membrane Interactions Differentially Depend on Mitofilin Domains. Journal of Molecular Biology, 2012, 422, 183-191.	2.0	112
57	Phosphatidylethanolamine and Cardiolipin Differentially Affect the Stability of Mitochondrial Respiratory Chain Supercomplexes. Journal of Molecular Biology, 2012, 423, 677-686.	2.0	183
58	Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends in Cell Biology, 2012, 22, 185-192.	3.6	135
59	Mitochondrial protein import: from transport pathways to an integrated network. Trends in Biochemical Sciences, 2012, 37, 85-91.	3.7	129
60	Molecular nanoenvironment of the mitochondrial presequence translocase. FASEB Journal, 2012, 26, 585.1.	0.2	0
61	Regulation of Mitochondrial Protein Import by Cytosolic Kinases. Cell, 2011, 144, 227-239.	13.5	218
62	Dual Role of Mitofilin in Mitochondrial Membrane Organization and Protein Biogenesis. Developmental Cell, 2011, 21, 694-707.	3.1	361
63	Mitochondrial protein import machineries and lipids: A functional connection. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1002-1011.	1.4	27
64	Dual Function of Sdh3 in the Respiratory Chain and TIM22 Protein Translocase of the Mitochondrial Inner Membrane. Molecular Cell, 2011, 44, 811-818.	4.5	121
65	Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane. Journal of Molecular Biology, 2011, 405, 113-124.	2.0	82
66	Structural Basis for the Function of Tim50 in the Mitochondrial Presequence Translocase. Journal of Molecular Biology, 2011, 411, 513-519.	2.0	41
67	Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Molecular Biology of the Cell, 2011, 22, 2135-2143.	0.9	107
68	The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. Journal of Cell Biology, 2011, 194, 387-395.	2.3	117
69	Biogenesis of mitochondrial \hat{l}^2 -barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Molecular Biology of the Cell, 2011, 22, 2823-2833.	0.9	47
70	Cooperation of Stop-Transfer and Conservative Sorting Mechanisms in Mitochondrial Protein Transport. Current Biology, 2010, 20, 1227-1232.	1.8	75
71	Mitochondrial protein import: from proteomics to functional mechanisms. Nature Reviews Molecular Cell Biology, 2010, 11, 655-667.	16.1	598
72	Assembly of the Mitochondrial Protein Import Channel. Molecular Biology of the Cell, 2010, 21, 3106-3113.	0.9	54

#	Article	IF	Citations
73	Distinct Forms of Mitochondrial TOM-TIM Supercomplexes Define Signal-Dependent States of Preprotein Sorting. Molecular and Cellular Biology, 2010, 30, 307-318.	1.1	92
74	Two Modular Forms of the Mitochondrial Sorting and Assembly Machinery Are Involved in Biogenesis of α-Helical Outer Membrane Proteins. Journal of Molecular Biology, 2010, 396, 540-549.	2.0	89
75	Assembling the Outer Membrane. Science, 2010, 328, 831-832.	6.0	8
76	Connecting Organelles. Science, 2009, 325, 403-404.	6.0	26
77	Mitochondrial Cardiolipin Involved in Outer-Membrane Protein Biogenesis: Implications for Barth Syndrome. Current Biology, 2009, 19, 2133-2139.	1.8	204
78	Biogenesis of mitochondrial membrane proteins. Current Opinion in Cell Biology, 2009, 21, 484-493.	2.6	59
79	Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability. Cell, 2009, 139, 428-439.	13.5	434
80	Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell, 2009, 138, 628-644.	13.5	1,199
81	Evolution of mitochondrial protein biogenesis. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 409-415.	1.1	41
82	Mitochondrial F1Fo-ATP Synthase: The Small Subunits e and g Associate with Monomeric Complexes to Trigger Dimerization. Journal of Molecular Biology, 2009, 392, 855-861.	2.0	37
83	Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Reports, 2008, 9, 548-554.	2.0	53
84	Multiple pathways for sorting mitochondrial precursor proteins. EMBO Reports, 2008, 9, 42-49.	2.0	282
85	The MIA system for protein import into the mitochondrial intermembrane space. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 610-617.	1.9	54
86	Dissecting Membrane Insertion ofÂMitochondrial β-Barrel Proteins. Cell, 2008, 132, 1011-1024.	13.5	276
87	The Mitochondrial Proteome: From Inventory to Function. Cell, 2008, 134, 22-24.	13.5	129
88	Response: The Mitochondrial \hat{l}^2 -Signal and Protein Sorting. Cell, 2008, 135, 1159-1160.	13.5	3
89	Mitochondrial Biogenesis, Switching the Sorting Pathway of the Intermembrane Space Receptor Mia40*. Journal of Biological Chemistry, 2008, 283, 29723-29729.	1.6	56
90	Precursor Oxidation by Mia40 and Erv1 Promotes Vectorial Transport of Proteins into the Mitochondrial Intermembrane Space. Molecular Biology of the Cell, 2008, 19, 226-236.	0.9	78

#	Article	IF	Citations
91	Mitochondrial Protein Import Motor: Differential Role of Tim44 in the Recruitment of Pam17 and J-Complex to the Presequence Translocase. Molecular Biology of the Cell, 2008, 19, 2642-2649.	0.9	60
92	The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221.	2.3	113
93	The Assembly Pathway of the Mitochondrial Carrier Translocase Involves Four Preprotein Translocases. Molecular and Cellular Biology, 2008, 28, 4251-4260.	1.1	55
94	Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. Journal of Cell Biology, 2008, 183, 195-202.	2.3	82
95	Biogenesis of the Mitochondrial TOM Complex. Journal of Biological Chemistry, 2008, 283, 120-127.	1.6	125
96	Alternative function for the mitochondrial SAM complex in biogenesis of \hat{l}_{\pm} -helical TOM proteins. Journal of Cell Biology, 2007, 179, 881-893.	2.3	104
97	Import of Proteins into Mitochondria. Methods in Cell Biology, 2007, 80, 783-806.	0.5	86
98	Biogenesis of the Essential Tim9–Tim10 Chaperone Complex of Mitochondria. Journal of Biological Chemistry, 2007, 282, 22472-22480.	1.6	74
99	Profiling Phosphoproteins of Yeast Mitochondria Reveals a Role of Phosphorylation in Assembly of the ATP Synthase. Molecular and Cellular Proteomics, 2007, 6, 1896-1906.	2.5	142
100	Diverse mechanisms and machineries for import of mitochondrial proteins. Biological Chemistry, 2007, 388, 891-897.	1.2	21
101	Novel Mitochondrial Intermembrane Space Proteins as Substrates of the MIA Import Pathway. Journal of Molecular Biology, 2007, 365, 612-620.	2.0	140
102	Preprotein Transport Machineries of Yeast Mitochondrial Outer Membrane Are not Required for Bax-induced Release of Intermembrane Space Proteins. Journal of Molecular Biology, 2007, 368, 44-54.	2.0	34
103	A dynamic machinery for import of mitochondrial precursor proteins. FEBS Letters, 2007, 581, 2802-2810.	1.3	78
104	Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. Journal of Cell Biology, 2007, 179, 1115-1122.	2.3	95
105	Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nature Cell Biology, 2007, 9, 1152-1159.	4.6	149
106	The morphology proteins Mdm12/Mmm1 function in the major \hat{l}^2 -barrel assembly pathway of mitochondria. EMBO Journal, 2007, 26, 2229-2239.	3.5	146
107	Nikolaus Pfanner. Current Biology, 2007, 17, R820-R822.	1.8	1
108	The Mitochondrial Machinery for Import of Precursor Proteins. , 2007, 390, 99-117.		18

#	Article	IF	CITATIONS
109	Import of Precursor Proteins Into Isolated Yeast Mitochondria. , 2006, 313, 373-384.		24
110	Isolation of Yeast Mitochondria. , 2006, 313, 033-040.		205
111	Toward the Complete Yeast Mitochondrial Proteome:Â Multidimensional Separation Techniques for Mitochondrial Proteomics. Journal of Proteome Research, 2006, 5, 1543-1554.	1.8	341
112	Chaperoning through the Mitochondrial Intermembrane Space. Molecular Cell, 2006, 21, 145-148.	4.5	39
113	Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO Journal, 2006, 25, 184-195.	3.5	204
114	The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes. EMBO Reports, 2006, 7, 1233-1238.	2.0	60
115	A Role for Tim21 in Membrane-Potential-Dependent Preprotein Sorting in Mitochondria. Current Biology, 2006, 16, 2271-2276.	1.8	158
116	Mitochondrial morphology and protein importâ€"A tight connection?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 414-421.	1.9	28
117	Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane. Science, 2006, 312, 1523-1526.	6.0	166
118	Proteomic Analysis of the Yeast Mitochondrial Outer Membrane Reveals Accumulation of a Subclass of Preproteins. Molecular Biology of the Cell, 2006, 17, 1436-1450.	0.9	192
119	Mitochondrial Protein Sorting. Journal of Biological Chemistry, 2006, 281, 22819-22826.	1.6	90
120	Pam17 Is Required for Architecture and Translocation Activity of the Mitochondrial Protein Import Motor. Molecular and Cellular Biology, 2005, 25, 7449-7458.	1.1	104
121	Inactivation of the Mitochondrial Heat Shock Protein Zim17 Leads to Aggregation of Matrix Hsp70s Followed by Pleiotropic Effects on Morphology and Protein Biogenesis. Journal of Molecular Biology, 2005, 351, 206-218.	2.0	63
122	The Essential Mitochondrial Protein Erv1 Cooperates with Mia40 in Biogenesis of Intermembrane Space Proteins. Journal of Molecular Biology, 2005, 353, 485-492.	2.0	137
123	Preprotein Translocase of the Outer Mitochondrial Membrane: Reconstituted Tom40 Forms a Characteristic TOM Pore. Journal of Molecular Biology, 2005, 353, 1011-1020.	2.0	89
124	Mitochondrial Presequence Translocase: Switching between TOM Tethering and Motor Recruitment Involves Tim21 and Tim17. Cell, 2005, 120, 817-829.	13.5	315
125	Biogenesis of the Protein Import Channel Tom40 of the Mitochondrial Outer Membrane. Journal of Biological Chemistry, 2004, 279, 18188-18194.	1.6	158
126	Sam35 of the Mitochondrial Protein Sorting and Assembly Machinery Is a Peripheral Outer Membrane Protein Essential for Cell Viability. Journal of Biological Chemistry, 2004, 279, 22781-22785.	1.6	120

#	Article	IF	CITATIONS
127	The Presequence Translocase-associated Protein Import Motor of Mitochondria. Journal of Biological Chemistry, 2004, 279, 38047-38054.	1.6	109
128	Mitochondrial import and the twin-pore translocase. Nature Reviews Molecular Cell Biology, 2004, 5, 519-530.	16.1	312
129	Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO Journal, 2004, 23, 3735-3746.	3.5	396
130	Pam16 has an essential role in the mitochondrial protein import motor. Nature Structural and Molecular Biology, 2004, 11, 226-233.	3.6	189
131	Assembling the mitochondrial outer membrane. Nature Structural and Molecular Biology, 2004, 11, 1044-1048.	3.6	196
132	The Protein Import Machinery of Mitochondria. Journal of Biological Chemistry, 2004, 279, 14473-14476.	1.6	294
133	CELL BIOLOGY: Double Membrane Fusion. Science, 2004, 305, 1723-1724.	6.0	12
134	The Mitochondrial Morphology Protein Mdm10 Functions in Assembly of the Preprotein Translocase of the Outer Membrane. Developmental Cell, 2004, 7, 61-71.	3.1	249
135	Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM-TIM-preprotein supercomplex. EMBO Journal, 2003, 22, 5370-5381.	3.5	141
136	Mechanisms of Protein Import into Mitochondria. Current Biology, 2003, 13, R326-R337.	1.8	198
137	Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature, 2003, 424, 565-571.	13.7	344
138	Protein Insertion into the Mitochondrial Inner Membrane by a Twin-Pore Translocase. Science, 2003, 299, 1747-1751.	6.0	272
139	Insertion of Hydrophobic Membrane Proteins into the Inner Mitochondrial Membrane—A Guided Tour. Journal of Molecular Biology, 2003, 326, 639-657.	2.0	83
140	Biogenesis of Yeast Mitochondrial Cytochrome c: A Unique Relationship to the TOM Machinery. Journal of Molecular Biology, 2003, 327, 465-474.	2.0	34
141	The proteome of Saccharomyces cerevisiae mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13207-13212.	3.3	839
142	Mitochondria Use Different Mechanisms for Transport of Multispanning Membrane Proteins through the Intermembrane Space. Molecular and Cellular Biology, 2003, 23, 7818-7828.	1.1	58
143	An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane. Journal of Biological Chemistry, 2003, 278, 48520-48523.	1.6	286
144	A J-protein is an essential subunit of the presequence translocase–associated protein import motor of mitochondria. Journal of Cell Biology, 2003, 163, 707-713.	2.3	191

#	Article	IF	Citations
145	Mitochondrial Import of the ADP/ATP Carrier: the Essential TIM Complex of the Intermembrane Space Is Required for Precursor Release from the TOM Complex. Molecular and Cellular Biology, 2002, 22, 7780-7789.	1.1	97
146	Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. Journal of Molecular Biology, 2002, 316, 657-666.	2.0	123
147	The Mitochondrial Presequence Translocase. Cell, 2002, 111, 507-518.	13.5	241
148	Tim22, the Essential Core of the Mitochondrial Protein Insertion Complex, Forms a Voltage-Activated and Signal-Gated Channel. Molecular Cell, 2002, 9, 363-373.	4.5	150
149	The mitochondrial import machinery: preprotein-conducting channels with binding sites for presequences. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 15-24.	1.9	52
150	Mitochondrial protein import: two membranes, three translocases. Current Opinion in Cell Biology, 2002, 14, 400-411.	2.6	93
151	The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO Journal, 2001, 20, 941-950.	3.5	76
152	The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO Journal, 2001, 20, 951-960.	3.5	213
153	Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nature Structural Biology, 2001, 8, 361-370.	9.7	184
154	A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Structural Biology, 2001, 8, 1074-1082.	9.7	287
155	Versatility of the mitochondrial protein import machinery. Nature Reviews Molecular Cell Biology, 2001, 2, 339-349.	16.1	453
156	Mitochondrial Import Driving Forces: Enhanced Trapping by Matrix Hsp70 Stimulates Translocation and Reduces the Membrane Potential Dependence of Loosely Folded Preproteins. Molecular and Cellular Biology, 2001, 21, 7097-7104.	1.1	68
157	Transport of proteins into mitochondria. , 2001, 143, 81-136.		37
158	Chapter 11 Assaying protein import into mitochondria. Methods in Cell Biology, 2001, 65, 189-215.	0.5	123
159	Protein Import Channel of the Outer Mitochondrial Membrane: a Highly Stable Tom40-Tom22 Core Structure Differentially Interacts with Preproteins, Small Tom Proteins, and Import Receptors. Molecular and Cellular Biology, 2001, 21, 2337-2348.	1.1	154
160	Biogenesis of Porin of the Outer Mitochondrial Membrane Involves an Import Pathway via Receptors and the General Import Pore of the Tom Complex. Journal of Cell Biology, 2001, 152, 289-300.	2.3	151
161	Purification of Saccharomcyes cerevisiae Mitochondria Devoid of Microsomal and Cytosolic Contaminations. Analytical Biochemistry, 2000, 287, 339-342.	1.1	143
162	Protein unfolding by mitochondria. EMBO Reports, 2000, 1, 404-410.	2.0	160

#	Article	IF	CITATIONS
163	Membrane Potential-Driven Protein Import into Mitochondria. Molecular Biology of the Cell, 2000, 11, 3977-3991.	0.9	122
164	Absence of Cardiolipin in the crd1 Null Mutant Results in Decreased Mitochondrial Membrane Potential and Reduced Mitochondrial Function. Journal of Biological Chemistry, 2000, 275, 22387-22394.	1.6	350
165	The mitochondrial import receptor Tom70: identification of a 25 kda core domain with a specific binding site for preproteins 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 303, 479-488.	2.0	89
166	Biogenesis of Tim Proteins of the Mitochondrial Carrier Import Pathway: Differential Targeting Mechanisms and Crossing Over with the Main Import Pathway. Molecular Biology of the Cell, 1999, 10, 2461-2474.	0.9	119
167	Distribution of Binding Sequences for the Mitochondrial Import Receptors Tom20, Tom22, and Tom70 in a Presequence-carrying Preprotein and a Non-cleavable Preprotein. Journal of Biological Chemistry, 1999, 274, 16522-16530.	1.6	208
168	Functional Staging of ADP/ATP Carrier Translocation across the Outer Mitochondrial Membrane. Journal of Biological Chemistry, 1999, 274, 20619-20627.	1.6	162
169	Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature, 1999, 401, 485-489.	13.7	269
170	The Protein Import Motor of Mitochondria. Cell, 1999, 97, 565-574.	13.5	231
171	Separation of structural and dynamic functions of the mitochondrial translocase: Tim44 is crucial for the inner membrane import sites in translocation of tightly folded domains, but not of loosely folded preproteins. EMBO Journal, 1998, 17, 4226-4237.	3.5	56
172	Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature, 1998, 395, 516-521.	13.7	478
173	The Import Route of ADP/ATP Carrier into Mitochondria Separates from the General Import Pathway of Cleavable Preproteins at thetrans Side of the Outer Membrane. Journal of Biological Chemistry, 1998, 273, 16374-16381.	1.6	42
174	Preprotein Translocase of the Outer Mitochondrial Membrane: Molecular Dissection and Assembly of the General Import Pore Complex. Molecular and Cellular Biology, 1998, 18, 6515-6524.	1.1	231
175	The Sorting Route of Cytochrome b 2Branches from the General Mitochondrial Import Pathway at the Preprotein Translocase of the Inner Membrane. Journal of Biological Chemistry, 1997, 272, 30439-30446.	1.6	44
176	Differential Recognition of Preproteins by the Purified Cytosolic Domains of the Mitochondrial Import Receptors Tom20, Tom22, and Tom70. Journal of Biological Chemistry, 1997, 272, 20730-20735.	1.6	231
177	The Intermembrane Space Domain of Mitochondrial Tom22 Functions as a <i>trans</i> Binding Site for Preproteins with N-Terminal Targeting Sequences. Molecular and Cellular Biology, 1997, 17, 6574-6584.	1.1	132
178	Analysis of the Sorting Signals Directing NADH-Cytochrome <i>b</i> cations within Yeast Mitochondria. Molecular and Cellular Biology, 1997, 17, 4024-4032.	1.1	40
179	Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature, 1997, 388, 195-200.	13.7	267
180	The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO Journal, 1997, 16, 5408-5419.	3 . 5	268

#	Article	IF	CITATIONS
181	Identification of a third yeast mitochondrial Tom protein with tetratrico peptide repeats. FEBS Letters, 1996, 382, 153-158.	1.3	51
182	Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import EMBO Journal, 1996, 15, 2125-2137.	3.5	154
183	Differential requirement for the mitochondrial Hsp70-Tim44 complex in unfolding and translocation of preproteins EMBO Journal, 1996, 15, 2668-2677.	3.5	111
184	Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends in Biochemical Sciences, 1996, 21, 51-52.	3.7	130
185	Differential requirement for the mitochondrial Hsp70-Tim44 complex in unfolding and translocation of preproteins. EMBO Journal, 1996, 15, 2668-77.	3.5	35
186	The Mitochondrial Receptor Complex: the Small Subunit Mom8b/Isp6 Supports Association of Receptors with the General Insertion Pore and Transfer of Preproteins. Molecular and Cellular Biology, 1995, 15, 6196-6205.	1.1	114
187	Cyclophilin 20 Is Involved in Mitochondrial Protein Folding in Cooperation with Molecular Chaperones Hsp70 and Hsp60. Molecular and Cellular Biology, 1995, 15, 2654-2662.	1.1	147
188	Mitochondrial Import of Subunit Va of Cytochrome c Oxidase Characterized with Yeast Mutants. Journal of Biological Chemistry, 1995, 270, 3788-3795.	1.6	75
189	Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44 Journal of Cell Biology, 1994, 127, 1547-1556.	2.3	238
190	Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import. FEBS Letters, 1994, 349, 215-221.	1.3	92
191	The polytopic mitochondrial inner membrane proteins MIM17 and MIM23 operate at the same preprotein import site. FEBS Letters, 1994, 349, 222-228.	1.3	73
192	Mitochondrial GrpE is present in a complex with hsp70 and preproteins in transit across membranes Molecular and Cellular Biology, 1994, 14, 6627-6634.	1.1	105
193	Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria Journal of Biological Chemistry, 1994, 269, 9045-9051.	1.6	117
194	Mitochondrial GrpE Is Present in a Complex with hsp70 and Preproteins in Transit across Membranes. Molecular and Cellular Biology, 1994, 14, 6627-6634.	1.1	47
195	Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria. Journal of Biological Chemistry, 1994, 269, 9045-51.	1.6	107
196	Insertion of MOM22 into the mitochondrial outer membrane strictly depends on surface receptors. FEBS Letters, 1993, 321, 197-200.	1.3	75
197	Identification of MIM23, a putative component of the protein import machinery of the mitochondrial inner membrane. FEBS Letters, 1993, 330, 66-70.	1.3	117
198	The mitochondrial receptor complex: A central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore. Cell, 1993, 74, 483-492.	13.5	199

#	Article	IF	Citations
199	Presequence and mature part of preproteins strongly influence the dependence of mitochondrial protein import on heat shock protein 70 in the matrix Journal of Cell Biology, 1993, 123, 119-126.	2.3	156
200	The essential yeast protein MIM44 (encoded by MPI1) is involved in an early step of preprotein translocation across the mitochondrial inner membrane Molecular and Cellular Biology, 1993, 13, 7364-7371.	1.1	113
201	Biogenesis of the mitochondrial receptor complex. Two receptors are required for binding of MOM38 to the outer membrane surface Journal of Biological Chemistry, 1993, 268, 19177-19180.	1.6	50
202	Biogenesis of the mitochondrial receptor complex. Two receptors are required for binding of MOM38 to the outer membrane surface. Journal of Biological Chemistry, 1993, 268, 19177-80.	1.6	47
203	Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature, 1992, 355, 84-87.	13.7	196
204	Mitochondrial preproteins en route from the outer membrane to the inner membrane are exposed to the intermembrane space. FEBS Letters, 1991, 293, 85-88.	1.3	89
205	Protein folding causes an arrest of preprotein translocation into mitochondria in vivo Journal of Cell Biology, 1991, 115, 1601-1609.	2.3	117
206	Targeting of the master receptor MOM19 to mitochondria. Science, 1991, 254, 1659-1662.	6.0	124
207	Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences Journal of Biological Chemistry, 1991, 266, 18051-18057.	1.6	329
208	Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. Journal of Biological Chemistry, 1991, 266, 18051-7.	1.6	273
209	Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, 1990, 348, 137-143.	13.7	760
210	Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature, 1990, 348, 610-616.	13.7	271
211	Import of ADP/ATP carrier into mitochondria: two receptors act in parallel Journal of Cell Biology, 1990, 111, 2353-2363.	2.3	194
212	A mitochondrial import receptor for the ADP/ATP carrier. Cell, 1990, 62, 107-115.	13.5	308
213	Polypeptides traverse the mitochondrial envelope in an extended state. FEBS Letters, 1990, 275, 190-194.	1.3	164
214	Role of ATP in mitochondrial protein import. Conformational alteration of a precursor protein can substitute for ATP requirement. Journal of Biological Chemistry, 1988, 263, 4049-51.	1.6	55
215	Mitochondrial protein import: Nucleoside triphosphates are involved in conferring import-competence to precursors. Cell, 1987, 49, 815-823.	13.5	323
216	Mitochondrial precursor proteins are imported through a hydrophilic membrane environment. FEBS Journal, 1987, 169, 289-293.	0.2	86

#	Article	IF	CITATIONS
217	Distinct steps in the import of ADP/ATP carrier into mitochondria Journal of Biological Chemistry, 1987, 262, 7528-7536.	1.6	230
218	Distinct steps in the import of ADP/ATP carrier into mitochondria. Journal of Biological Chemistry, 1987, 262, 7528-36.	1.6	186
219	The Chaperone System of Mitochondria. , 0, , 1020-1046.		0